\int \frac{\frac{3+2cosx}{sin^{2}x}}{\frac{(2+3cosx)^{2}}{sin^{2}x}}dx
\int \frac{3cosec^{2}x+2cosecx.cotx}{(2cosecx+3cotx)^{2}}dx
This is of the form
-\int \frac{f'(x)}{(f(x))^{2}}dx
i hope u can solve it from here... :)
\int \frac{\frac{3+2cosx}{sin^{2}x}}{\frac{(2+3cosx)^{2}}{sin^{2}x}}dx
\int \frac{3cosec^{2}x+2cosecx.cotx}{(2cosecx+3cotx)^{2}}dx
This is of the form
-\int \frac{f'(x)}{(f(x))^{2}}dx
i hope u can solve it from here... :)
MAK ROCKSSSSSSSSSSSSSSSSSSS..............................bhaiya giv him an extra pink..................wat a gr8 method....cooooolllll
:D
wanna share one more thing...
if d expression is of d form
\int \frac{a+bsinx}{(asinx+b)^{2}}dx
then dividing numerator n denominator with cos2x will give d above format... :)
one more thing, anytime if we have even powers of sin and cos in denominator, we should multiply and divide the denominatr by cos2. this helps in most of the cases i have seen.