ans is
-\frac{4}{3}(2+\sqrt{x})\sqrt{1-\sqrt{x}}+c
1- \sqrt{x} = t ^ 2
t = \sqrt{ 1- \sqrt{x}}
\sqrt{x} = 1- t^2
\frac{-1}{2\sqrt{x}}dx = 2 t dt
integral reduces to
\int \frac{ - 2 \sqrt{x} . 2t dt }{t}
- 4\int \sqrt{x} dt = - 4\int \left(1- t^ 2 \right) dt
= - 4t + \frac{4t^ 3}{3} + c
- 4 \sqrt{1-\sqrt{x}} + 4(\sqrt{1-\sqrt{x}}) ^{3} /3
take \sqrt{1-\sqrt{x}}
as common u get
-\frac{4}{3}\sqrt{1-\sqrt{x}}\left(3 - \sqrt{(1 - \sqrt{x}) ^2} \right)
-\frac{4}{3}\sqrt{1-\sqrt{x}}\left(2 + \sqrt{x} \right)
substitute \sqrt{x}=t
2\int \frac{t}{\sqrt{1-t}}dt=2\int t{(1-t)^{-1/2}}dt
now substitue 1-t=m2