Hint: use
if ∫f(x)=g(x)+c, then
∫f(ax+b) = 1ag(ax+b) +c
Solution:
ax2 can be written as (x√a)2
So the answer will be
1√a√∩√2
\int_{0}^{\infty}{e^{-x^2}dx}=\sqrt{\frac{\pi }{2}}
then find value of \int_{0}^{\infty}{e^{-ax^2}dx},a>0
Hint: use
if ∫f(x)=g(x)+c, then
∫f(ax+b) = 1ag(ax+b) +c
Solution:
ax2 can be written as (x√a)2
So the answer will be
1√a√∩√2