integration help.DOUBT

\int_{-\pi /2}^{\pi /2}{\sqrt{cos^{2n-1}x-cos^{2n+1}x}}dx,n\epsilon N-

ans------> 42n+1

1 Answers

29
govind ·

\int \sqrt{cos^{2n -1}x}(\sqrt{1 - cos^{2}x}dx = \int \sqrt{cos^{2n -1}x}(sinx)dx..take cosx = t..since it's a symmetric function so it can be written as \int_{-\pi /2}^{\pi /2}{} \sqrt{cos^{2n -1}x}(sinx)dx = 2\int_{0}^{\pi /2}{} \sqrt{cos^{2n -1}x}(sinx)dx

take cosx = t

\Rightarrow -\int_{1}^{0}{t^{n - 1/2}}dt = -\left(\frac{t^{n+1/2}}{n+1/2} \right)

Now put the limits ..u will get the answer..

Your Answer

Close [X]