integration

not a doubt

I\! f \;\; 2f(x) + f(-x) = \frac{1}{x}sin(\frac{x^2-1}{x}), F\! i\! n\! d \; \; \int_{1/e}^{e}{f(x)dx}

4 Answers

21
eragon24 _Retired ·

0 ...isnt it

106
Asish Mahapatra ·

yup :)

62
Lokesh Verma ·

replace x by -x

you get a pair of simultaneous equations..

eliminate f(-x) to get f(x)

Some one finishing this off?

11
Tush Watts ·

As per Nishant's Sir hint :-

2 f(x) + f(-x) = 1/x sin (x - 1/x) ...................................(i)

Replace x by -x , we get

2 f (-x) + f(x) = 1/x sin (x- 1/x) ...................................(ii)

Subtracting (i) and (ii), we get
f(x) = f(-x)

Therefore, 3 f(x) = 1/x sin (x- 1/x)
Therefore, I =
= 1/3
Put 1/x = t , dx = -1/t2 dt

Therefore, I = 1/3
= -1/3

Therefore, I = - I
2 I = 0
I = 0

Your Answer

Close [X]