√√3 sinx + cosx
acosx + bsinx form where b = √3
a= 1
c= √a^2 + b^2 = √3+ 1
= 2
write it as
acosxc+ bsinx c
→ cosx2 +√3sinx 2
use cos ( a + b ) or sin ( a + b ) form and then integrate
∫ 1√3 sin x + cos x dx
(there is no square root on sinx it's just √3 sin x is outside root.)
[ ans - 12 log l tan (x2 + pi12) + c ]
√√3 sinx + cosx
acosx + bsinx form where b = √3
a= 1
c= √a^2 + b^2 = √3+ 1
= 2
write it as
acosxc+ bsinx c
→ cosx2 +√3sinx 2
use cos ( a + b ) or sin ( a + b ) form and then integrate
short cut is
\int \frac{dx}{a sin x + bcosx } = \frac{1}{\sqrt{a^2 + b^2}} log \left\left|tan\left(\frac{x}{2}+ \frac{\tan^{-1} \frac{b}{a}}{2} \right) \right|+ c