11} \int_0^{\frac {\pi}{2}} e^x\left\{\cos \ (\sin x)\cos ^2 \frac {x}{2} + \sin \ (\sin x)\sin ^ 2 \frac {x}{2}\right\}\ dx
12} \int_{ - \pi}^{\pi} \frac {\sin nx}{(1 + 2009^x)\sin x}\ dx\ (n = 0,\ 1,\ 2,\ \cdots)
13] \int_0^1 \sqrt {\frac {x + \sqrt {x^2 + 1}}{x^2 + 1}}\ dx
14} \int_1^e \{(1 + x)e^x + (1 - x)e^{ - x}\}\ln x\ dx
15} \dislaystyle \left|\frac {\int_0^{\frac {\pi}{2}} (x\cos x + 1)e^{\sin x}\ dx}{\int_0^{\frac {\pi}{2}} (x\sin x - 1)e^{\cos x}\ dx}\right|
16} \int_{0}^{\pi}\frac{\cos (rx)}{1-2a\cos x+a^2}\;dx
17]\int_{1}^{e} \frac{(1 + \ln{x})^2}{x} dx
18}\mathop \int_0^{1}\frac{1}{x(1-x)^\frac{1}{2}}dx
19} \mathop \int_0^{1}\frac{x-1}{lnx}dx
20} f(x) = \int_{2}^{e^x}\frac{1}{\sqrt{\ln t}}dt