integration siikho

this thread is only for integration sums............

AND YA FORGOT TO TELL ALL TARGETIT USERS, I HAVE COPIED ALL THESE SUMS. SO KISIKO GAALI DENA HAIN YA KUCH KEHNA HAIN, PLEASE VISIT

http://targetiit.com/profile711.html AND POST THEM IN CHATBOX. THANKS IN ADVANCE............

1}\int_{0}^{1}e^{\sqrt{e^{x}}}\ dx+2\int_{e}^{e^{\sqrt{e}}}\ln (\ln x)\ dx

2} \int \frac{x^{3}}{(x-1)^{3}(x-2)}\ dx

3}1985 japan women university

\lim_{a\rightarrow + \infty} \frac {\int_0^a \sin ^ 4 x\ dx}{a}

4} \frac{1}{\displaystyle \int _0^{\frac{\pi}{2}} \cos ^{2006}x \cdot \sin 2008 x\ dx}

5} \int_0^{\frac {\pi}{2}} \frac {x^2}{(\cos x + x\sin x)^2}\ dx

6} IF F(X)= x2 + |x| then prove that

\int_{0}^{\pi}f(\cos x)\ dx=2\int_{0}^{\frac{\pi}{2}}f(\sin x)\ dx

7}Evaluate the following definite integral.

\int_{e^{2}}^{e^{3}}\frac {\ln x\cdot\ln (x\ln x)\cdot\ln\{x\ln (x\ln x)\} + \ln x + 1}{\ln x\cdot\ln (x\ln x)}\ dx

8}

Let f a nonnegative ,continuous and periodical function defined on the reals, such that the arithmetic mean of the numbers f(1), f(2),...f(n) tends to zero when n tends to infinity. Prove that f(k)=0 for any natural number k.

9}\int_{0}^{1}\frac {x\ dx}{(x^{2} + x + 1)^{\frac {3}{2}}}

10}\int_{2}^{6}\ln\frac { - 1 + \sqrt {1 + 4x}}{2}\ dx

174 Answers

11
Mani Pal Singh ·

ashish recheck ur solution
the answer coming out is 3
by limit as a sum
ur 2nd step is doubtful to me

1
betrayed.... always ·

Mr. Manipal, plz chk out post # 98 on page 4......urgent

11
Mani Pal Singh ·

HAVE A LOOK AT IT

http://targetiit.com/iit_jee_forum/posts/important_information_2774.html

1
Grandmaster ·

hey dude isko bhi integrate karo

∫ (√x-3 ) ( sin-1(ln(x) ) + cos-1(ln(x) ))

11
Mani Pal Singh ·

@GRANDMASTER

11
Mani Pal Singh ·

Q34

1
karanveer singh ·

18)1.> take x=t2
the limits remain as 0 and 1
dx=2t.dt and the rest is the integral of sec-1(x)

62
Lokesh Verma ·

f(x) = \int_{2}^{e^x}\frac{1}{\sqrt{\ln t}}dt

k=lnt\\ \\ t=e^{k}\\ dk=frac{1}{e^{k}}dt\\ \\ dt={e^{k}}dk\\

does this help?

11
Mani Pal Singh ·

BUT SIR KYA HUM ISS MEIN X KO CONSTANT MAANEINGE

1
Akand ·

hey guys do tht √1+x3 wala naa........its difficult and different........wel cubic under a root is dere for our syllabus????

11
Mani Pal Singh ·

HAVE A LOOK AT IT

http://targetiit.com/iit_jee_forum/posts/important_information_2774.html

66
kaymant ·

The integration of √1+x3 cannot be written in terms of the elementary functions. It will come in terms of the Elliptical integral.

66
kaymant ·

Q4) Ans: 2007
Hint: Write the denominator as \int_0^{\pi/2} \cos^{n-1}x \,\sin (n+1)x \ \mathrm{d}x. Exapand the sine to get:
\int_0^{\pi/2}\cos^{n-1}x \big(\sin nx \cos x + \cos nx \sin x\big)\ \mathrm{d}x\\[2ex] =\int_0^{\pi/2}\cos^nx\,\sin nx \ \mathrm{d}x + \int_0^{\pi/2}\cos nx\ \cos^{n-1}x \sin x \ \mathrm{d}x
Now integrate the second one by parts.

1
betrayed.... always ·

Q 45 mein kahin "summation" ayega kya ??

1
chetan wahi ·

Bhargav.. sorry for the behavior that day..

Threads with solutions:

1) Post 26 by Manipal
2)
3) Post 8 by asish
4) Post 74 by Kamyant
5)
6) Post 7 by asish
7)
8)
9)
10)
11)
12)
13)
14)
15)
16)
17)
18) Post 29 by Manipal
19)
20)
21) Post 18 by Virang
22) Post 19 by Virang
23) Post 40 by Manipal
24) Post 27 by Tapan
25)
26) Post 12 by Akand
27) Post 16 by Akand
28)
29) Post 17 by Akand
30)
31)
32)
33)
34) Post 77 by Manipal
35)
36)
37)
38) Post 35 by Manipal
39)
40)
41)
42)
43) 55 by Asish
44) 57 by Asish
45)
46)
47)
48)
49)
50)

11
Mani Pal Singh ·

THANX BUDDY 4 UR KIND HELP [1]
IT WAS VERY ESSENTIAL 4 THIS THREAD

21
tapanmast Vora ·

q20]

LET lnt = x2

1/tdt = 2xdx

I = ∫ex*2x/xdx

I = ∫exdx over appropriate limitsssss

66
kaymant ·

First determine the indefinite integral:
I=\int\dfrac{x\cos x}{(x\sin x+\cos x)^2}\ x\sec x\ \mathrm{d}x
Note that \int\dfrac{x\cos x}{(x\sin x+\cos x)^2}\ \mathrm{d}x = \int \dfrac{\mathrm{d}(x\sin x + \cos x)}{(x\sin x+\cos x)^2}=-\dfrac{1}{x\sin x+\cos x}
Therefore,
I = x\sec x \left(-\dfrac{1}{x\sin x+\cos x}\right) + \int \dfrac{\sec x(1+x\tan x)}{x\sin x+\cos x}\ \mathrm{d}x
= \dfrac{-x\sec x}{x\sin x+\cos x} + \int \sec^2x\ \mathrm{d}x
= \dfrac{-x\sec x}{x\sin x+\cos x} + \tan x=\dfrac{\sin x-x\cos x}{x\sin x+\cos x}+C
Hence the definite integral is
\left|\dfrac{\sin x-x\cos x}{x\sin x+\cos x}\right|_0^{\pi/2}=\dfrac{2}{\pi}

13
Двҥїяuρ now in medical c ·

i solved Q5 in post#7

13
Двҥїяuρ now in medical c ·

41]

=0∫1 dx/1+x

=[ln(1+x)]01

=ln 2

66
kaymant ·

We have
\mathrm{d}\big(x\ln\{x\ln(x\ln x)\}-x\big)
=\ln\{x\ln(x\ln x)\}\ \mathrm{d}x+ x \cdot \dfrac{1}{x\ln(x\ln x)}\left(\ln(x\ln x)+ x\cdot \dfrac{1}{x\ln x}\left\{\ln x+ 1\right\}\right)\ \mathrm{d}x-\mathrm{d}x
=\left(\ln\{x\ln(x\ln x)\}+\dfrac{\ln(x\ln x)+\dfrac{1+\ln x}{\ln x}}{\ln(x\ln x)}-1\right)\ \mathrm{d}x
=\dfrac{\ln x \cdot \ln(x\ln x)\cdot \ln\{x\ln(x\ln x)\}+\ln x+1}{\ln x\cdot \ln(x\ln x)}\ \mathrm{d} x
Therefore,
\int\dfrac{\ln x \cdot \ln(x\ln x)\cdot \ln\{x\ln(x\ln x)\}+\ln x+1}{\ln x\cdot \ln(x\ln x)}\ \mathrm{d} x = x\ln\{x\ln(x\ln x)\}-x +C
The definite integral can now be easily evaluated.

11
virang1 Jhaveri ·

45.
lim n → ∞ (1/n!)^(1/n)

Since it is raised to 1/n. Here 1/∞ = 0
Therefore the ans is 1

1
betrayed.... always ·

∫ (√1+x4)dx
(1-x4 )

And haan answer in x and functions only!

Ya this sum is xeroxed one so dont be surprised if u si dis in a book !

:-D

11
Mani Pal Singh ·

1
Dipanjan Das ·

15)

1
rajat sen ·

13.

1
rajat sen ·

17.

1
rajat sen ·

1
Grandmaster ·

hey dude isko bhi integrate karo

∫ (√x-3 ) ( sin-1(ln(x) ) + cos-1(ln(x) ))

@ manipal singh

dude ye to trap questoin tha ,just check ki the function exist or not[1]

1
°ღ•๓яυΠ·

∫ex /(x2 +1)2

Your Answer

Close [X]