integration siikho

this thread is only for integration sums............

AND YA FORGOT TO TELL ALL TARGETIT USERS, I HAVE COPIED ALL THESE SUMS. SO KISIKO GAALI DENA HAIN YA KUCH KEHNA HAIN, PLEASE VISIT

http://targetiit.com/profile711.html AND POST THEM IN CHATBOX. THANKS IN ADVANCE............

1}\int_{0}^{1}e^{\sqrt{e^{x}}}\ dx+2\int_{e}^{e^{\sqrt{e}}}\ln (\ln x)\ dx

2} \int \frac{x^{3}}{(x-1)^{3}(x-2)}\ dx

3}1985 japan women university

\lim_{a\rightarrow + \infty} \frac {\int_0^a \sin ^ 4 x\ dx}{a}

4} \frac{1}{\displaystyle \int _0^{\frac{\pi}{2}} \cos ^{2006}x \cdot \sin 2008 x\ dx}

5} \int_0^{\frac {\pi}{2}} \frac {x^2}{(\cos x + x\sin x)^2}\ dx

6} IF F(X)= x2 + |x| then prove that

\int_{0}^{\pi}f(\cos x)\ dx=2\int_{0}^{\frac{\pi}{2}}f(\sin x)\ dx

7}Evaluate the following definite integral.

\int_{e^{2}}^{e^{3}}\frac {\ln x\cdot\ln (x\ln x)\cdot\ln\{x\ln (x\ln x)\} + \ln x + 1}{\ln x\cdot\ln (x\ln x)}\ dx

8}

Let f a nonnegative ,continuous and periodical function defined on the reals, such that the arithmetic mean of the numbers f(1), f(2),...f(n) tends to zero when n tends to infinity. Prove that f(k)=0 for any natural number k.

9}\int_{0}^{1}\frac {x\ dx}{(x^{2} + x + 1)^{\frac {3}{2}}}

10}\int_{2}^{6}\ln\frac { - 1 + \sqrt {1 + 4x}}{2}\ dx

174 Answers

39
Dr.House ·

80]\int {\frac{1}{{x + \sqrt {x^2 - x + 1} }}} dx

39
Dr.House ·

81] Solve y^{''}y=c for some nonzero constant c.

11
Mani Pal Singh ·

in Q81 what we have to solve 4 ???
srry 4 this question
but this is a 2nd order D.E

so i know this much that

\frac{\partial y\frac{\partial y}{\partial x}}{\partial x}=c-(\frac{\partial y}{\partial x})^{2}

wat can do of it ???

11
Mani Pal Singh ·

Q78

\int {\sqrt {x + \sqrt {x^2 + a^2 } } } dx

39
Dr.House ·

82]\[ \int{\frac{{(1+t^{2})^{\frac{3}{2}}}}{{(1+t^{5})}}}dt \]

39
Dr.House ·

83]\[ \int{\frac{{zdz}}{{z^{4}-z^{2}+1}}} \]

39
Dr.House ·

84]\[ \int{\frac{{3x^{3}+5x^{2}-7x+9}}{{\sqrt{2x^{2}+5x+7}}}}dx \]

39
Dr.House ·

85]\[ \int{\frac{{dx}}{{x-\sqrt{x^{2}+2x+4}}}} \]

39
Dr.House ·

86]\[ \int{\sqrt{x+\sqrt{x^{2}+a^{2}}}}dx \]

1
°ღ•๓яυΠ·

83

z^2=t
2zdz=dt
so int bcums

dt/(2)(t^2-t+1)

this is a std one

1
°ღ•๓яυΠ·

86 euler's substutution

11
Mani Pal Singh ·

no guy or gal interested in dis topic
try dese they will prove to be useful[1]

1
Girish Chandra Kar ·

1.∫(tan x)1/3dx
2.∫√cos 2xdx/sin x

1
Girish Chandra Kar ·

hey frnds.....nobody has send d answers......plz help me...

1
ganesh.cvk mohan ·

umm....can anyone who has tym plz solve questn number 32..

am having a bit trouble with that one.

thanks

49
Subhomoy Bakshi ·

many questions unsolved! ;-)

1
Che ·

^so solve them ! :P

1
omkarsp ·

a different approach for 9th

\int\frac{x}{\left ( x^2+x+1 \right )^{\frac{3}{2}}}dx

\int\frac{x}{\left ( x^2+x+1 +\frac{1}{4}-\frac{1}{4} \right )^{\frac{3}{2}}}dx
\int\frac{x}{\left ( x^2+x+\frac{1}{4}+\frac{3}{4} \right )^{\frac{3}{2}}}dx

\int\frac{x}{\left ( (x+\frac{1}{2})^2+\frac{3}{4} \right )^{\frac{3}{2}}}dx

let\, \, \,x+ \frac{1}{2} = \frac{\sqrt{3}}{2}tan\alpha \rightarrow dx= \frac{\sqrt{3}}{2}sec^2\alpha. d\alpha
\int \frac{\frac{1}{2}\left ( \sqrt{3} tan\alpha -1\right )\frac{\sqrt{3}}{2}sec^2\alpha d\alpha }{\left ( \frac{3}{4} (1+tan^2\alpha )\right )^{\frac{3}{2}}}

\int \frac{\frac{\sqrt{3}}{4}\left ( \sqrt{3}tan\alpha -1\right ).sec^2\alpha d\alpha }{\frac{3.\sqrt{3}}{2^3}.sec^3\alpha }
\frac{2}{3}\int{\left ( \sqrt{3}tan\alpha -1\right ).cos\alpha d\alpha }
\frac{2}{3}\int{\left ( \sqrt{3}tan\alpha.cos\alpha -cos\alpha \right )d\alpha }
\frac{2}{3}\int{\left ( \sqrt3{sin\alpha } -cos\alpha \right )d\alpha }

which can be done ....

1
harsh jindal ·

45) ans is e/n

1
samagra Kr ·

46.
ans: 1/(b+1)

f(b)= ∫(x^b)-1)/ln x dx
f'(b)=∫(x^b ln x)/ln x dx= x^ b ,treating x as constant
:
f(b)= x^(b+1)/(b+1) ,put the limits
:
f(b)= 1/b+1

1
samagra Kr ·

sorry the ans is : ln(b+1)

f(b)=∫(x^b -1)/ln x dx
f'(b)=x^b ln x/ln x dx ,treating x as constant
:

f'(b)=x^(b+1)/(b+1) ,putting the limits
:
:
f"(b)+1/b+1;
f(b)= ln(b+1)

1357
Manish Shankar ·

view for integration sums

1357
Manish Shankar ·

Look at these integration questions guys,
they are really good.

1133
Sourish Ghosh ·

How to do Q8. and Q36. ? Sir, only give hints.

Your Answer

Close [X]