limit

\mathbf{\lim_{n\rightarrow \infty}\left(2012.\bold{\sqrt[n]{2010}}-2011\right)^n}

3 Answers

262
Aditya Bhutra ·

is it 1 ?

1708
man111 singh ·

=(2010)2012

71
Vivek @ Born this Way ·

Yes man111. Your answer is correct.

We have,

L = \lim_{n\to\infty} \left(2012\sqrt[n]{2010}-2011 \right)^n

L = \lim_{n\to\infty} \left(1+2012(\sqrt[n]{2010}-1))^n

It is of the form 1∞.

L = e^{ \lim_{n\to\infty} 2012(\sqrt[n]{2010}-1\;)\;n}

Substituting n = 1/r ; lim n→ ∞ = lim r → 0

L = e^{ \lim_{r\to0} 2012(2010^r-1\;)\;\frac{1}{r}}

By L-Hopitals in the index limit,

L = e^{2012.\ln{2010}}

L = 2010^{2012} \;\; \blacksquare \mathcal{H}\text{ence}\;\mathcal{D}\text{one}

- Vivek

Your Answer

Close [X]