is it 1 ?
\mathbf{\lim_{n\rightarrow \infty}\left(2012.\bold{\sqrt[n]{2010}}-2011\right)^n}
-
UP 0 DOWN 0 0 3
3 Answers
Vivek @ Born this Way
·2012-02-03 09:02:08
Yes man111. Your answer is correct.
We have,
L = \lim_{n\to\infty} \left(2012\sqrt[n]{2010}-2011 \right)^n
L = \lim_{n\to\infty} \left(1+2012(\sqrt[n]{2010}-1))^n
It is of the form 1∞.
L = e^{ \lim_{n\to\infty} 2012(\sqrt[n]{2010}-1\;)\;n}
Substituting n = 1/r ; lim n→ ∞ = lim r → 0
L = e^{ \lim_{r\to0} 2012(2010^r-1\;)\;\frac{1}{r}}
By L-Hopitals in the index limit,
L = e^{2012.\ln{2010}}
L = 2010^{2012} \;\; \blacksquare \mathcal{H}\text{ence}\;\mathcal{D}\text{one}
- Vivek