limit

if f(x) is deferentiable and strictly increasing funtion then the value of
lim x→0 f(x2)-f(x)/ f(x)-f(0) is......

1 Answers

66
kaymant ·

The given limit is 0/0 form. One can apply the L'Hospital rule:
\lim_{x\to 0}\dfrac{f(x^2)-f(x)}{f(x)-f(0)}=\lim_{x\to 0}\dfrac{2xf^\prime(x^2)-f^\prime(x)}{f^\prime(x)}=-\dfrac{f^\prime(0)}{f^\prime(0)}=-1

Your Answer

Close [X]