limits...

plz solve...............

10 Answers

1
dimensions (dimentime) ·

a = 1

b = 0.5

is it ?????????

11
Anirudh Narayanan ·

Can u pls post ur method, dimensions?

62
Lokesh Verma ·

x2-x+1 +ax - b

rationalize

{ x2-x+1 -(ax-b)2 }
x2-x+1 - ax + b

{ x2(1-a2) -x(1-2ab) +1 -(b)2 }
x2-x+1 - ax + b

Firstly, the numerator should have coeff of x2 as zero...

hence a=±1

{ - (1-2ab)+ (1-b2)/x }
1/x2-1/x+1 - a + b/x

Now do this using both the cases, a=1 or a=-1

62
Lokesh Verma ·

a=1

{ - (1-2b)+ (1-b2)/x }
1/x2-1/x+1 - 1 + b/x

{ - (1-2b)+ (1-b2)/x }
1/x2-1/x+1 - 1 + b/x

for the limit to exist, b=1/2 will give a solutin.. (otherwise it will be of the forum non-zero / zero...

case a=-1

{ - (1+2b)+ (1-b2)/x }
1/x2-1/x+1 + 1 + b/x

deno is 2 ... (in the limiting case.) .. for numerator to be zero, b=-1/2

Edit*
but when you put back a=1 the original limit is of the form ∞+∞... so that cant be zero...

* end Edit

Hnece

a=1, b=1/2

1
RAY ·

sorry...but answer acc to d book is only 1 and .5...........

not the negitive ones.....is dat wrong???

1
dimensions (dimentime) ·

well,i think nishant bahiyya has solved but didnt checket back by putting the values in original question,

the ans will indeed be a=1 & b = 0.5 only,
the negative ones do not satisfy the org ques....

1
RAY ·

where will u put d value dimensions???

1
dimensions (dimentime) ·

just put negative values

lim x->- infty √x2-x+1-x+0.5

u will not get lim = 0

1
RAY ·

oh.....okk....thanx...dimensions...

bhaiya apna posts red karo.......:D

62
Lokesh Verma ·

hmm.. tx dimensions... :)

Your Answer

Close [X]