limitsssss

1) \lim_{x\rightarrow 0} (\frac{sinx}{x}) ^{1/x}

2) \lim_{x\rightarrow +0} (log cotx ) ^{tanx}

3 Answers

62
Lokesh Verma ·

use expansion for 1

to have (1-x2/6)1/x=e-x/6=1

1
avik ·

solve 2

23
qwerty ·

hereL = \lim_{x\rightarrow 0^{+}}e^{log([logcotx]^{tanx})}

now
\lim_{x\rightarrow 0}\frac{log(logcotx)}{cotx }=\lim_{cotx\rightarrow infty}\frac{log(logcotx)}{cotx }

since as x→0+, cotx →∞
=\lim_{cotx\rightarrow infty}\frac{log(logcotx)}{logcotx }\times \frac{logcotx}{cotx}

=0 \times 0 = 0

since
\lim_{x\rightarrow infty}\frac{logx}{x} = 0

so L = e0 = 1

Your Answer

Close [X]