limitua

\lim_{x\rightarrow \propto } (x- ln coshx) where cosh t=\frac{e^{t}+e^{-t}}{2}

15 Answers

1
avik ·

2) \lim_{x\rightarrow 0} \frac{a^{tanx}-a^{sinx}}{tanx-sinx}

3) \lim_{n\rightarrow \propto } \left[\frac{2}{\Pi } (n+1)\cos^{-1} \left(\frac{1}{n} \right)-n \right]

106
Asish Mahapatra ·

for second one, take asinx common from numerator and ull get of the form k*ax-1x

1
avik ·

4) \lim_{x\rightarrow 0} \frac{tan^{2}x - x^{2}}{x^{2}tan^{2}x}

btw how to put space in latex?

1
Ricky ·

1 > In the solution below , the limit tends to infinity in each step .

x - ln cosh x

= ln e x - ln cosh x

= ln e xcosh x

= ln 2 e xe x + e - x

= ln 21 + e - 2 x . . . . . . . . . . . . After Dividing By " e x " ;

Now , " ln " is a continuos function , hence we can take the limit inside the " ln " .

By taking the limit inside , i . e , by making x tending to infinity , the fraction inside " ln " tends to 2 as then " e - 2 x " tends to zero .

Hence , the answer is " ln 2 = . 6 9 3 " .

3
Abhishek Majumdar ·

4) Lt {[(tanx-x) (tanx+x)]/x4} [x/tanx]2
x→0

now apply the expansion of tanx and then get the answer
i hope u can proceed now

1
avik ·

solve plz

1
EMF ·

1) ln2
2) lna
3) 1
??

1
Anirudh Kumar ·

avik chek my soln to the 3rd question

1
avik ·

ans for 3 is 1-2/pi

...and plz solve q2 , i m not getting it.

62
Lokesh Verma ·

sECOND Question

\frac{a^{tan x}-a^{sin x}}{tan x- sin x}=a^{sin x}\frac{a^{tan x - sin x}-1}{tan x- sin x}=1.ln a=ln a

1
avik ·

but the ans is ln a

6
Kalyan IIT-K Beware I'm coming ·

use l'hospital for 2nd one....is it not coming by l'hospital?

1
avik ·

no, didnt get by LH ... if u hav got, plz help me.

62
Lokesh Verma ·

edited :)

6
Kalyan IIT-K Beware I'm coming ·

i dnt remember the formula of d/dx ax

Your Answer

Close [X]