Max. value.

$Q:$\Rightarrow$ Find Max. value of The Expression $f(x,y)=x^2y-y^2x$\\\\. Where $0\leq x,y\leq1.$

8 Answers

23
qwerty ·

is it 1/4 ?

1708
man111 singh ·

Yes Qwerty u r saying right. Can u explain it.

23
qwerty ·

consider it to be a quadratic in y,

ay-by2= f

hence it will be a downward opening parabola , whoz max occurs at y = -B/2A = -(-a/2b) = a/2b = x2 /2x =x/2

i.e at y = x/2

so f = x32 - x3/4 = x3/4

so fmax = 1/4 , as x ε [0,1]

1708
man111 singh ·

plz check me if i wrong....

$\boldsymbol{Ans:}$\Rightarrow $Let $M=f(x,y)=x^2y-y^2x=-(y^2x-x^2y)....................(1)$\\\\ Now Completing Square in terms of $y$,We Get\\\\ $M=-x.(y^2-xy)=-x.\left \{ \underbrace{y^2-xy+(\frac{x}{2})^2}-(\frac{x}{2})^2\right \}=-x.\left\{ (y-\frac{x}{2})^2-\frac{x^2}{4}\right \}$.\\\\ So $M = \frac{x^3}{4}-x.(y-\frac{x}{2})^2$, for Max. Vlaue of $M$, square term i.e $(y-\frac{x}{2})^2$ must be 0.\\\\ So $M_{max}=\frac{x^3}{4}=\frac{1}{4}$. (bcz $\frac{x^3}{4}$ is an strictly Increasing function in $0\leq x\leq1$).\\\\ So $\boxed{M_{max} = \frac{1}{4}}$

23
qwerty ·

yes !! thats a simpler ans !!

1708
man111 singh ·

Yes This is a simple answer.

$\boldsymbol{Ans:}$\Rightarrow$ We Can also solve This question using $x=cos\theta$ and $y=sin\theta$\\\\Where $0\leq\theta\leq\frac{\pi}{2}$

341
Hari Shankar ·

On similar lines, by AM-GM

y(x-y) \le \left(\frac{y+x-y}{2}\right)^2 = \frac{x^2}{4}

Hence xy(x-y) \le \frac{x^3}{4} \le \frac{1}{4}

with equality occurring when x=1 and y=1/2

1708
man111 singh ·

one of the best ever solution.
Thanks hsbhatt Sir.

Your Answer

Close [X]