parametric function

y=f(x) is a curve defined as

x = 1-3t2
y = t-3t3

h(x) = |f(x)| + f(x)
g(x) = |f(x)| - f(x)

then a∫b h(x) dx is equal to

(A) a∫b g(x) dx
(B) b∫a g(x) dx
(C) b∫a g(x) dx only if a,b →[0,1]
(D) None of these

11 Answers

1
Vivek ·

anyone?

21
tapanmast Vora ·

make t da subject from "x" √ [(1-x)/3]
then substitute t in y.

u get f(x), then get h, g then solve everything

1
Akand ·

DUDE TAPAN..........tried tht but isnt it too long???? no shorter one??

1
MATRIX ·

im getting d.....[4][4][4].........

1
skygirl ·

ans kya hai??

none of these?

1
skygirl ·

y = x√(1-x)/3 =f(x)

h(x) = |f(x)| + f(x) ----------1
g(x) = |f(x)| - f(x) ----------2

subtract 2 from 1.

h(x) - g(x) = 2 f(x)

\int_{a}^{b}{h(x)} - \int_{a}^{b}{g(x)} = 2/\sqrt{3}. \int_{a}^{b}{x\sqrt{1-x} dx}

even if a=0, b=1..

∫h(x) ≠∫g(x) ...

so. shud be D.

33
Abhishek Priyam ·

:p

what if a=b=0

:P

1
MATRIX ·

not given in option naaa priyam.........[1][1][1]........

33
Abhishek Priyam ·

a) and b) to ho sakta hai na tab if a=b=0..

1
skygirl ·

good one!

yeh toh soche nahi...

ho sakta hai...

par as it is not mentioned beside the options ...
so [3]

waise, subjective me ayega ,, toh main bagal mein likh dungi : 'priyam says' :P [3]

1
MATRIX ·

ya but..........not given in that cases a=b=0........so not possible .....

Your Answer

Close [X]