1
Hodge Conjecture
·2010-08-28 07:29:20
\large f(x+\lambda )= 1+ \sqrt{2f(x)-f^{2}(x )} → (1.)
substituing : \large x=x+\lambda , in the given equation we have,
\large f(x+2\lambda )= 1+ \sqrt{2f(x+\lambda)-f^{2}(x+\lambda )} →(2)
now squaring equation (1) and substituting:
\large (f(x)-1)^{2} , in place of \large {2f(x+\lambda )-f^{2}(x+\lambda)}
we finally have,
\large f(x+2\lambda) = f(x)
hence period = \large 2\lambda
1
pritishmasti ...............
·2010-08-28 07:42:05
thanx born......;)
plz find the period of this also:
f(x-1) + f(x+1) = \sqrt{3} f(x)
1
Che
·2010-08-28 08:09:13
http://targetiit.com/iit-jee-forum/posts/a-few-ques-from-algebra-12922.html
1
Hodge Conjecture
·2010-08-28 09:42:19
f(x-1)+f(x+1)=√3f(x)→(1)
substituting. x=x+1 , in eq. (1)
f(x) + f(x+2) = √3f(x+1) → (2)
substituting. x=x+2 , in eq. (1)
f(x+1) + f(x+3) =√3f(x+2) →(3)
adding (1) + (3) and rearranging the terms (with the help of eq. (2) )
f(x-1) + f(x+3) =f(x+1) → (4)
substituting x=x+2 in eq. (4)
f(x+1) + f(x+5) = f(x+3) →(5)
adding (4) + (5)
f(x-1) + f(x+5) =0 →(6)
substituting x= x+1 in (6)
f(x) + f(x+6) =0 → (7)
substituting x= x+6 in eq. (7)
f(x+6) + f (x+12 )=0
(6) - (7)
f(x) = f (x+12)
hence period = 12.