periodic functions (arihant)

find the period of following function:

f(x+\lambda ) = 1 + \sqrt{2f(x) - f^{2}(x)}

i have a doubt in answer

4 Answers

1
Hodge Conjecture ·

\large f(x+\lambda )= 1+ \sqrt{2f(x)-f^{2}(x )} → (1.)

substituing : \large x=x+\lambda , in the given equation we have,

\large f(x+2\lambda )= 1+ \sqrt{2f(x+\lambda)-f^{2}(x+\lambda )} →(2)

now squaring equation (1) and substituting:

\large (f(x)-1)^{2} , in place of \large {2f(x+\lambda )-f^{2}(x+\lambda)}

we finally have,

\large f(x+2\lambda) = f(x)

hence period = \large 2\lambda

1
pritishmasti ............... ·

thanx born......;)

plz find the period of this also:
f(x-1) + f(x+1) = \sqrt{3} f(x)

1
Che ·

http://targetiit.com/iit-jee-forum/posts/a-few-ques-from-algebra-12922.html

1
Hodge Conjecture ·

f(x-1)+f(x+1)=√3f(x)→(1)

substituting. x=x+1 , in eq. (1)

f(x) + f(x+2) = √3f(x+1) → (2)

substituting. x=x+2 , in eq. (1)

f(x+1) + f(x+3) =√3f(x+2) →(3)

adding (1) + (3) and rearranging the terms (with the help of eq. (2) )

f(x-1) + f(x+3) =f(x+1) → (4)

substituting x=x+2 in eq. (4)

f(x+1) + f(x+5) = f(x+3) →(5)

adding (4) + (5)

f(x-1) + f(x+5) =0 →(6)

substituting x= x+1 in (6)

f(x) + f(x+6) =0 → (7)

substituting x= x+6 in eq. (7)

f(x+6) + f (x+12 )=0

(6) - (7)

f(x) = f (x+12)

hence period = 12.

Your Answer

Close [X]