Periodicity of functions...

1) If f:R→R is a function satisfying the property f(2x+3) + f(2x+7) = 2, x#R, then the period of f(x) is?

2)If f(x) = sin(\sqrt{\left[\lambda \right]}x) is a periodic function with period \prod{}, where [.] represents greatest integer, then a) \lambda \epsilon [4,5) b) \lambda \varepsilon [4,5] c) \lambda =4,5 d) none of these

4 Answers

1
Euclid ·

3) If a real valued function f(x) satisfies the eqn f(x+y)= f(x) + f(y) for all real x,y, then f(X) is
a) a periodic function
b) an even function
c) an odd function
d) none of these

1
Sonne ·

3 is odd function

f(x)=kx

this is cauchy's functional equation

1
Sonne ·

2 is a
as λ shud be a perfect square

1
Ricky ·

f ( 2 x + 3 ) + f ( 2 x + 7 ) = 2

Replace " x " by " x + 2 " .

f ( 2 x + 7 ) + f ( 2 x + 11 ) = 2

Subtracting ,

f ( 2 x + 3 ) = f ( 2 x + 11 )

Hence , f ( x ) is a function with period 8 .

Your Answer

Close [X]