real roots

\hspace{-16}$Find all $a > 0,\;$ for which the equation\\\\ $a^{2x}- 4(x+1).a^x + 3x^2 + 10x + 3 = 0$ has $2$ real roots\\\\ in the interval $\left[-1, 2\right]$\\\\

2 Answers

62
Lokesh Verma ·

\\\left(a^x-(2x+2) \right)^2=(x-1)^2 \\\left(a^x-(2x+2) \right)=(x-1)\text{ or }\left(a^x-(2x+2) \right)=-(x-1) \\a^x=3x+1\text{ or }a^x=x+3 \\

Now usign graphs this is not very difficult?

1708
man111 singh ·

Thanks Nishant sir

Your Answer

Close [X]