2 I = ( b - a ) \int_{a}^{b}{ ( x - a ) ^ 3 ( b- x ) ^ 3}
next let x- a = t
and proceed
The value of \int_{a}^{b}{(x-a)^3 (b-x)^4 dx } is
a)(b-a)464
b) (b-a)8280
c)(b-a)773
d) None Of These
(ans given in book is b)
\\I=\int_{a}^{b}{(x-a)^3(b-x)^4} \\\text{substituting x-a=t }I=\int_{0}^{b-a}{(t)^3(b-a-t))^4}
Now finish it..?
2 I = ( b - a ) \int_{a}^{b}{ ( x - a ) ^ 3 ( b- x ) ^ 3}
next let x- a = t
and proceed
i think the other method to finish dis of is use of property
\int_{a}^{b}{f(x )} dx= ( b- a) \int_{0}^{1}{f\left(( b-a)x + a \right)}dx