341
Hari Shankar
·2009-12-18 00:55:55
1 one: you want a shorter method than what? telescopic summation is the way to go
1
Che
·2009-12-18 06:08:33
@prophet sir can u tell me wat u mean by telescopic summation [1]
62
Lokesh Verma
·2009-12-18 06:32:08
it means something like
(a-b)+(b-c)+(c-d)+(d-e)+....
so that every alternative one cancels out.
11
Devil
·2009-12-18 08:24:24
2)
I_n=\int_{-\pi}^{\pi}\frac{sin(nx)}{(1+\pi^x)(sinx)}dx
Now we apply properties of definite integrals to get
2I_{n}=\int_{-\pi}^{\pi}{\frac{sin(nx)}{sinx}dx}
Now write sin(nx)=sin(2x+(n-2)x).....thus (if I've not made any silly mistake)
\boxed{I_{n+2}=I_n} if n be even and option d0 if n be odd......