::::some doubts::::

Q1......................

for 0< \theta <\pi /2
the solutions of \sum_{m=1}^{6}{cosec(\theta +\frac{(m-1)\pi }{4}}).cosec(\theta +\frac{m\pi }{4})=4\sqrt{2}

are

1) pi/4
2)pi/6
3)pi/12
4)5pi/12

P.S i want a shorter method for this....if der is any

Q2...........................................

I_{n}=\int_{-\pi }^{\pi }{\frac{sin(nx) }{(1+\pi ^{x})sin(x)}}dx
n=0,1,2.....
then

A) I_{n}=I_{n+2}

B) \sum_{m=1}^{10}{I_{2m+1}}=10\pi

C)\sum_{m=1}^{10}{I_{2m}}=0

D)I_{n}=I_{n+1}

4 Answers

341
Hari Shankar ·

1 one: you want a shorter method than what? telescopic summation is the way to go

1
Che ·

@prophet sir can u tell me wat u mean by telescopic summation [1]

62
Lokesh Verma ·

it means something like

(a-b)+(b-c)+(c-d)+(d-e)+....

so that every alternative one cancels out.

11
Devil ·

2)

I_n=\int_{-\pi}^{\pi}\frac{sin(nx)}{(1+\pi^x)(sinx)}dx

Now we apply properties of definite integrals to get

2I_{n}=\int_{-\pi}^{\pi}{\frac{sin(nx)}{sinx}dx}

Now write sin(nx)=sin(2x+(n-2)x).....thus (if I've not made any silly mistake)

\boxed{I_{n+2}=I_n} if n be even and option d0 if n be odd......

Your Answer

Close [X]