Q1. f(x) = √2{x}² - 3{x} + 1
R1 : Square root term.
2{x}² - 3{x} + 1 ≥ 0
=> 2{x}² - 2{x} - {x} + 1 ≥ 0
=> 2{x}({x} - 1) - 1({x} - 1) ≥ 0
=> (2{x} - 1)({x} - 1) ≥ 0
=> ({x} - 1/2)({x} - 1) ≥ 0
{x} - 1 will always be negative as {x} → [0, 1)
So to make this non-negative,
{x} - 1/2 ≤ 0
=> {x} ≤ 1/2
=> {x} ≤ 0.5
But {x} ≥ 0
So {x} → [0, 0.5]
So as subho has found,
x ε [n, n + 0.5] where n ε Z or integer set.