∫ex(f(x)+f'(x))dx=0∫exdx=constant
exf(x)=const
so f(x) = ke-x ,, when x→ ∞
so ans is 0
Given a function, f differentiable on (0,∞) & the limit as x→∞ of (f(x)+f'(x))=0.
Find the limit of f(x) as x→∞.
∫ex(f(x)+f'(x))dx=0∫exdx=constant
exf(x)=const
so f(x) = ke-x ,, when x→ ∞
so ans is 0