Trigonometric Integrals....

\hspace{-16}(1)\;\;\int\frac{\sin x+\cos x}{\sin^2 x+\cos ^4 x}dx\\\\\\ (2)\;\; \int\frac{\cos x+x.\sin x}{x^2+\cos^2 x}dx

asked in goiit

4 Answers

1
fahadnasir nasir ·

They do not have palatable integral.

341
Hari Shankar ·

I beg to differ

\sin^2 x + \cos^4 x = 1 - \sin^2 x \cos^2 x

Now

\sin^2 x \cos^2 x = \left(\frac{t^2-1}{2} \right)^2

where t = \sin x - \cos x

Hence the given integral becomes

\int \frac{1}{1-\left(\frac{t^2-1}{2} \right)^2 } \ dt = \int \frac{1}{\left(\frac{3}{2}-t^2\right)\left(\frac{1}{2}+t^2\right)} \ dt

This is easily handled

1708
man111 singh ·

Thanks sir.(very easy.)

for (1)

http://www.goiit.com/posts/list/integral-calculus-integration-of-sinx-cosx-sin-2x-cos-4x-1119365.htm

for (2)

http://www.goiit.com/posts/list/integral-calculus-please-give-me-the-answer-of-this-integral-1118958.htm#1529259

1357
Manish Shankar ·

Second one

Multiply Nr and Dr by sec2x and then put x secx =t

Your Answer

Close [X]