1
fahadnasir nasir
·2011-08-20 21:17:25
They do not have palatable integral.
341
Hari Shankar
·2011-08-21 01:09:53
I beg to differ
\sin^2 x + \cos^4 x = 1 - \sin^2 x \cos^2 x
Now
\sin^2 x \cos^2 x = \left(\frac{t^2-1}{2} \right)^2
where t = \sin x - \cos x
Hence the given integral becomes
\int \frac{1}{1-\left(\frac{t^2-1}{2} \right)^2 } \ dt = \int \frac{1}{\left(\frac{3}{2}-t^2\right)\left(\frac{1}{2}+t^2\right)} \ dt
This is easily handled
1708
man111 singh
·2011-08-21 23:16:23
Thanks sir.(very easy.)
for (1)
http://www.goiit.com/posts/list/integral-calculus-integration-of-sinx-cosx-sin-2x-cos-4x-1119365.htm
for (2)
http://www.goiit.com/posts/list/integral-calculus-please-give-me-the-answer-of-this-integral-1118958.htm#1529259
1357
Manish Shankar
·2011-08-22 03:27:34
Second one
Multiply Nr and Dr by sec2x and then put x secx =t