Doubt in parabola

Consider a parabola y=\frac{x^{2}}{4} and the point F (0, 1). Let A1(x1, y1), A2(x2, y2), A3(x3, y3),........, An(xn, yn) are 'n' points on the parabola such

xk > 0 and <OFA_{k}=\frac{k\Pi }{2n} (k=1,2,3,....,n). Then the
value of \lim_{n\rightarrow \infty }\frac{1}{n}\sum_{k=1}^{n}{FA_{k}}, is = ?

(A) \frac{2}{\Pi } (B) \frac{4}{\Pi } (C) \frac{\Pi }{\2 } (D) \frac{\Pi }{\4 }

4 Answers

1
lubu ·

Is the answer b.\frac{\4 }{\Pi } ???????

1
adarsha ·

Srry but I dont hav d answer...can u explain me how u got the value?

1
golu pro ·

IS ans D

1
lubu ·

let Ak=(2t,t2)

Slope of FAk = t2-12t-0 = tan(Π/2+θk)

tan θk = 2t/1-t2 = tan(2φ) (say)

so φ = θk2 = 4n where tanφ = t

Also FAk = √(t2-1)2+(2t)2 = t2 + 1 = 1+tan2φ = sec2(kÎ /4n)

\lim_{n\rightarrow \infty }\frac{1}{n}\sum_{k=1}^{n}{FA_{k}} = \lim_{n\rightarrow \infty }\frac{1}{n}\sum_{k=1}^{n}{\sec ^{2}\left(\frac{\Pi }{4}(\frac{k}{n}) \right)} =
\int_{0}^{1}{\sec ^{2}\left(\frac{\Pi x}{4} \right)}dx. = \frac{4}{\Pi}\left[tan (\frac{\Pi x}{4}) \right]_{0}^{1}= \frac{4}{\Pi }

Your Answer

Close [X]