29
govind
·2010-02-12 02:57:51
Ans 1 Eqn of normal at (ae, b2/a) ends of latus rectum
x-ey=ae -\frac{b^{2}}{a}e
it passes through (0,b)
so we get
\frac{b}{a} = \frac{b^{2}}{a^{2}} - 1
Now put
\frac{b^{2}}{a^{2}} = 1-e^{2}
and \frac{b}{a} =\sqrt{1-e^{2}}
Squaring both sides.. u will get the answer D
3
rocky
·2010-02-15 23:11:55
tanθ=b sinφacosφ-ae
=(b/a) sinφcosφ-e
thus we get tanθ=√1-e2sinφcosφ-e
thus sinθcosφ-esinθ=√1-e2sinφ cosθ
put sinθ in terms of tan(θ/2), cosφ terms of terms of tan(θ/2)---
simplifying we get
(√1+etan(φ/2)+√1-ecot(θ/2) ) (√1+etan(φ/2)-√1-etan(θ/2) )=0
but θ and φ lies between 0 and Î
tan(θ/2)>0 and tan(φ/2)>0
(√1+etan(φ/2)+√1+ecot(θ/2) ) ≠0
but (√1+etan(φ/2)-√1+etan(θ/2) )=0
thus [tan(θ/2)] / [tan(φ/2)= √1+e√1-e
ans -------√3