let the equation of the plane ABCD be ax+by+cz+d=0
the point A" be (alpha,beta,gamma) and the height of the parallelopiped be h
then |a(alpha)+b(beta)+c(gamma)+d|/√a2+b2+c2=90%h
a(alpha)+b(beta)+c(gamma)+d=+/- 0.9h√a2+b2+c2
thus locus is ax+by+cz+d=+/-0.9h√a2+b2+c2
thus locus of A" is a plane parallel to plane ABCD