after that
(3+c)x2+(b-3)x+(2+d)/ denominator
dividing numerator and denominator by x2 we get,
(3+c)+(b-3)/x + (2+d)/x2 /denominator
3+c/2=4
c=5
a=2
b and d are any nos
evaluate a,b,c,d
if lim x→∞ (√x4+ax3+3x2+bx+2)-(√x4+2x3-cx2+3x-d=4
lim(x→∞) (√x4+ax3+3x2+bx+2 - √x4+2x3-cx2+3x-d)(√x4+ax3+3x2+bx+2 + √x4+2x3-cx2+3x-d)/√x4+ax3+3x2+bx+2 + √x4+2x3-cx2+3x-d)
= lim(x→∞) [(a-2)x3 + (3+c)x2 + (b-3)x + 2+d]/√x4+ax3+3x2+bx+2 + √x4+2x3-cx2+3x-d)
now as lim exists and equal to 4 and the highest deg of numerator = 3 while of denominator is 2 ... So, a-2 = 0 ==> a=2
(3+c)/2 = 4 ==> c = 5
now u have to calculate valus of b and d such that √x4+ax3+3x2+bx+2 and √x4+2x3-cx2+3x-d are defined
after that
(3+c)x2+(b-3)x+(2+d)/ denominator
dividing numerator and denominator by x2 we get,
(3+c)+(b-3)/x + (2+d)/x2 /denominator
3+c/2=4
c=5
a=2
b and d are any nos