Limits

evaluate a,b,c,d
if lim x→∞ (√x4+ax3+3x2+bx+2)-(√x4+2x3-cx2+3x-d=4

6 Answers

62
Lokesh Verma ·

rationalized?

106
Asish Mahapatra ·

lim(x→∞) (√x4+ax3+3x2+bx+2 - √x4+2x3-cx2+3x-d)(√x4+ax3+3x2+bx+2 + √x4+2x3-cx2+3x-d)/√x4+ax3+3x2+bx+2 + √x4+2x3-cx2+3x-d)

= lim(x→∞) [(a-2)x3 + (3+c)x2 + (b-3)x + 2+d]/√x4+ax3+3x2+bx+2 + √x4+2x3-cx2+3x-d)

now as lim exists and equal to 4 and the highest deg of numerator = 3 while of denominator is 2 ... So, a-2 = 0 ==> a=2

(3+c)/2 = 4 ==> c = 5

now u have to calculate valus of b and d such that √x4+ax3+3x2+bx+2 and √x4+2x3-cx2+3x-d are defined

1
Optimus Prime ·

after that

(3+c)x2+(b-3)x+(2+d)/ denominator
dividing numerator and denominator by x2 we get,

(3+c)+(b-3)/x + (2+d)/x2 /denominator

3+c/2=4

c=5
a=2

b and d are any nos

1
Optimus Prime ·

are u guys getting it as c=5 a=2 and b and d any nos?

62
Lokesh Verma ·

cool work guys :)

1
Optimus Prime ·

thanks

Your Answer

Close [X]