Matrix Match

Match the following

Consider the linear equations.

ax+by+cz=0
bx+cy+az=0
cx+ay+bz=0

(A) a+b+c≠0 and a2+b2+c2=ab+bc+ca
(B) a+b+c=0 and a2+b2+c2≠ab+bc+ca
(C) a+b+c≠0 and a2+b2+c2≠ab+bc+ca
(D) a+b+c=0 and a2+b2+c2=ab+bc+ca

(p) the equations represents planes meeting only at a single point.
(q) the equations represent the line x=y=z
(r) the equation represent identical planes.
(s) the equations represents the whole 3-D space.

10 Answers

33
Abhishek Priyam ·

since it is matrix match i got the answers... but a full method please... [7]

1
skygirl ·

ax+by+cz=0 => plane wid dir ratios a,b,c n passing through origin.
bx+cy+az=0 => ..........................b,c,a .................................
cx+ay+bz=0 => ..........................c,a,b .................................

so the planes pass thrugh the origin..

ans should be a.. [12]

1
skygirl ·

i mean ... P.

62
Lokesh Verma ·

|a b c| [x y z] =0
|b c a|
|c a b|

So we have 2 cases .. determinant zero and determinant non zero

Determinant is

a3+b3+c3 - 3abc

If a+b+c = 0 then
(a+b)3=-c3
will give determinant zero

a2+b2+c2=ab+bc+ca
means (a+b+c)2=3(a2+b2+c2)
if a+b+c=0
thus, a=b=c=0 (Check this statemtn.. jaldi me galti na hog gaya hai) This will represent the whole space..

now does it solve it :)

33
Abhishek Priyam ·

ye to thik hai..

a aur b ka ??

dono ka Δ=0 hai par uske age?

1
skygirl ·

(A) a+b+c≠0 and a2+b2+c2=ab+bc+ca

a^2+b^2+c^2=ab+bc+ca

=> (a-b)2 + (b-c)2 + (c-a)2 = 0

=> a=b=c ≠0 (given)

so all the eqns become: x+y+z =0

so A -> r

(B) a+b+c=0 and a2+b2+c2≠ab+bc+ca

a^2+b^2+c^2 ≠ab+bc+ca

=> a ≠b ≠c

but a+b+c=0 => x,y,z are collinear. (property)

so, B-> q

(C) a+b+c≠0 and a2+b2+c2≠ab+bc+ca

a^2+b^2+c^2 ≠ab+bc+ca

ax+by+cz=0 => plane wid dir ratios a,b,c n passing through origin.
bx+cy+az=0 => ..........................b,c,a .................................
cx+ay+bz=0 => ..........................c,a,b .................................

so the planes pass thrugh the origin..

so C-> p

(D) a+b+c=0 and a2+b2+c2=ab+bc+ca

a=b=c =0

=> x, y, z non-coplanar ... and it represents the whole space.

33
Abhishek Priyam ·

[1][3]

okieeee.....

samjh me aa gaya...

i was missing a=b=c=nonzero.. [3] in A

tx :)

1
skygirl ·

shud get a pink :P :P :P

33
Abhishek Priyam ·

haan jaroor :P

1
skygirl ·

:P

Your Answer

Close [X]