\hspace{-16}$ Ketan Actually Answer Given is $\bf{5\sqrt{2}-2}$
\hspace{-16}$The Minimum value of the Expression \\\\\\ $\bf{\sqrt{(x_{1}-x_{2})^2+\left(\frac{x^2_{1}}{20}-\sqrt{(17-x_{2})\times (x_{2}-13)}\right)^2}}$\\\\\\ Where $\bf{x_{1}\in \mathbb{R^{+}}}$ and $\bf{x_{2}\in (13,17)}$
-
UP 0 DOWN 0 0 4