put x = tan \phi
\phi = \tan^{-1} x
y = 2\phi = 2tan^{-1}x
\frac{dy}{dx} =\frac{2}{1 + x^2 }
\frac{dy}{dx} = \frac{d \left(2 \tan^{-1} x \right)}{dx} = \frac{2}{1+ x^2 }
Q10 find dy/dx where y=tan-1(2x/(1-x2))
a) 2/(1+x2)
b) 1/(1+x2)
c) 2/(1-x2)
d) 1/(1-x2)
Correct Answer: (a)
put x = tan \phi
\phi = \tan^{-1} x
y = 2\phi = 2tan^{-1}x
\frac{dy}{dx} =\frac{2}{1 + x^2 }
\frac{dy}{dx} = \frac{d \left(2 \tan^{-1} x \right)}{dx} = \frac{2}{1+ x^2 }