1) Show that for a positive integer n , the co-efficient of xk (0 ≤ k ≤ n) in the expansion of :
1 + (1+x) + (1+x)2 +......+ (1+x)n is n+1Cn-k .
-----------------------------------------------------------------------------------------
2)If f is differentiable at x=a, find the value of
Lt x2 f(a) - a2 f(x)x - a
x--->a
----------------------------------------------------------------------------------------
3)If m,n be integers then find the value of \int_{-\pi }^{\pi }{(cos(mx)-sin(nx))^{2} dx}
----------------------------------------------------------------------------------------
4)\int_{0}^{1000}{(e^{x-[x]}) dx} is equal to :
a)e1000 - 1 e - 1 b)e1000 - 1 1000 c)e - 1 1000 d)1000(e - 1)
------------------------------------------------------------------------------------------
5)The value of \int_{0}^{\propto }{\frac{dx}{(x^{2}+4)(x^{2}+9)}} is
a)\pi60 b)\pi20 c)\pi40 d)\pi80
------------------------------------------------------------------------------------------