TRIGNOMETRY

if sin β=1/5 sin(2α+β)
show that tan(α+β)=3/2 tan α

1 Answers

1
ARKA(REEK) ·

sinβ=1/5 sin(α+α+β)
5 sinβ=sinα cos(α+β) + cosαsin(α+β)
5 sinβ=cosα cos(α+β) [tanα + tan(α+β)]

5 sinβcosα cos(α+β)=tanα + tan(α+β)]

1/cosα [5 sinβcos(α+β)-sinα]=tan(α+β)]

1/cosα [10 sinβ - 2 sinα cos(α+β)2cos(α+β)]=tan(α+β)

1/cosα [10 sinβ - {sin(2α+β) - sinβ}2 cos(α+β)]=tan(α+β)

1/cosα [11 sinβ - sin(2α+β)2 cos(α+β)]=tan(α+β)

Now, 5 sinβ=sin(2α+β)

1/cosα [11/5 sin(2α+β) - sin(2α+β)2 cos(2α+β)]=tan(α+β)

1/cosα [3/5 tan(2α+β)]=tan(α+β)

Now prove the rest ....

Your Answer

Close [X]