-
x \int \frac{\sqrt{2sin ( x ^ 2-1 ) - sin 2( x^2 -1 )}}{ \sqrt{2sin ( x^2 -1)+ sin2 ( x^2 -1 )} }where x^2 -1 \neq n\pi ans is log \mid \left( sec \frac{ x^2 -1 }{2} \right) \mid + c for practice ...
-
\int \frac{dx}{(1+\sqrt{x})(\sqrt{x + x^{2}})} ans is. \sqrt{2}log tan \left\{\frac{1}{2}(tan^{-1}\sqrt{x})+\frac{\pi }{8} \right\} + c ...
-
let α & β be the roots of the equation ax^2+bx+c=0,a≠0,then the sum of the series (α+β)^(2 )+(α^2+β^2 )+(α-β)^2+⋯upto n terms is equal to A)(n(a^2+(n-1)ac))/a^2 B)(n(a^2-(n-1)bc))/b^2 C)(n(b^2+(n-1)ac))/a^2 D)(n(b ...
-
Q1 A bag contains 10 white and 10 black balls.A perosn draws two balls at a time without replacementand rpeleats till bag is empty.The probablity tha the draws the balls of same color each time Q2 The number of ordered pairs ...
-
the sum of solution of the equation sinπx=x2-7x+12 is k which can be expressed as the prouct of two prime numbers.the sum of the primes= ...
-
Find the modulus and argument of the complex number z1=z2-z if z=cos θ + i sin θ ...
-
*Image* ...
-
The smaller area enclosed by y = f(x) when f(x) is polynomial of least degree satisfying *Image* 1/x = e and the circle x2 + y2 = 2 above the x axis is a) \pi / 2 b) 3/5 c) \pi /2 - 3/5 d) \pi /2 + 3/5 ...
-
1..if f:R→R be a differential finction such that that f(2-x)=f(x) and f(5-x)=f(5+x) then 1.f'(-3)=0 2..f'(9)=0 . 3.if \int_{3}^{5}{f(x)dx=k},then \int_{11}^{15}{f(x) dx} wil l be k ...
-
Prove that (\sin \gamma + a \cos \gamma)(\sin \gamma + b \cos \gamma) \le 1 + \left( \frac{a+b}{2} \right)^2 for reals a,b ...
-
A non-zero vector a i s parallel to the line of intersection of plane P1 determined by i+j , i - 2j and plane P2 determined by vector 2i + j ,3i + 2k , then angle between a and vector i - 2j +2k is (A)Î /4 (B) Î /2 (C) Î /3 ( ...
-
area of the region bounded by the curve *Image* is A) 3 sq . unit B) 4 sq . unit C) 1 sq . unit D) 2 sq . unit ...
-
Prove (1 - cos A) /(sin A) tan(A/2) ...
-
The normal at a point P on the ellipse x2 + 4y2 = 16 meets the x-axis at Q.If M is the mid point of the line segment PQ, then the locus of M intersects the latus rectum of the given ellipse at the points A) \left(\pm \frac{3\ ...
-
*Image* ...
-
*Image* ...
-
*Image* ...
-
how to draw graph of x^(something in fraction) say x2/3 ...
-
*Image* ...
-
*Image* ...
-
*Image* Plz giv the trick ...
-
*Image* ...
-
f(x)=a_0+a_1cosx+a_2cos2x+a_3cos3x+...+a_ncosnx g(x)=b_1sinx+b_2sn2x+b_3sin3x+..+b_nsinnx Q1 If br= 1/r+1 ,then \lim_{n\rightarrow \infty} \int_{0}^{\pi }{g(x)dx} Q2 \sum_{k=0}^{n}{\int_{0}^{2\pi }{f(x).(cos kx)dx}} Q3 \sum_{ ...
-
*Image* ...
-
\int {e^{x\sin x+\cos x}}\left(\frac{x^4\cos^3x-x\sin x +\cos x}{x^2\cos^2 x} \right)dx ...
-
*Image* ...
-
*Image* ...
-
A(z1), B(z2), C(z3), D(z4), E(z5) are the vertices of a regular polygon ABCDE in anti clockwise order whose centre is at the origin O and M(z) is point inside the polygon. 1) If |arg(z4-z5/z-z5)| = |arg(z-z3/z4-z3)| = θ then ...
-
*Image* ...
-
if x^{5}-x^{3}+x=k then prove that x^{6}≥ 2k-1 ...