-
plz explain FERMAT"S law.. and its application ...
-
\int_{0}^{\frac{\pi }{2}}{\frac{sec^{2}x}{(secx+tanx)^{n}}}dx,n>1 ...
-
Q1 If f(x)= {x}g(x)/{x}g(x) is a periodic fn with pd 1/4 where g(x) is diff fn. then prove g(x)=0 at x=k/4 k ε I Q2 f: R→R,f(x)= x2+bx+1/x2+2x+b ,if the function f(x) and 1/f(x) have same bounded set as their range then fi ...
-
*Image* ...
-
If the circles x2+y2+2x+2ky+6=0 and x2+y2+2ky+k=0 intersect orthogonally , then k is a)2 or -3/2 b)-2 or -3/2 c)2 or 3/2 d) -2 or 3/2 .........what is meant by "circles intersect orthogonally".Plz show with a diagram. ...
-
2) If arg(z4-z5/Z-Z5) = arg(z-z3/z4-z3) = 7∩/30 , then the value of arg(z5-Z1/z-z1) is equal to A) ∩/4 B) 7∩/30 C) 4∩/15 D) ∩/3 ...
-
1) If |arg(z4-z5/z-z5)| = |arg(z-z3/z4-z3)| = θ then range of θ for which there exists two such M(z) is A) [ 0,3Π/5) B) [0,π/5) c) (0,2π/5) d) none of these ...
-
is 111...(30 times ) divisible by 17 ...
-
\int_{0}^{2a}{\sqrt{2ax-x^{2}}}dx ...
-
For a,b,c belonging in R+ the minimum value of (a+3c)/(a+2b+c)+4b/(a+b+2c)-8c/(a+b+3c) A)12+17√2 B)-12+17√2 C)-17+12√2 D)17-12√2......... ...
-
1.If z=reitheta,then modulus of eiz=? Ans.e-rsin theta ...
-
\int \frac{dx}{\sqrt{1-\sqrt{x}}} ...
-
If I_{n}=\int_{-\pi }^{\pi }{\frac{sin (nx)}{(1 + \pi ^{x})sin x}}dx, n = 0,1,2.... then A) I_{n} = I_{n+2} B) \sum_{m=1}^{10}{I_{2m+1}} = 10\pi C) \sum_{m=1}^{10}{I_{2m}} = 0 D) I_{n} = I_{n+1} (MULTIPLE OPTIONS CORRECT) ...
-
y = mx+2 will cut the pair of lines 2x2 - 3xy + y2 - x + y = 0 , at only one real point if m is equal to A) 1 B) -1 C) 2 D) -2 [multiple options correct] ...
-
prove that teh lines represented by ax^3+bx^2y+cxy^2+dy^3=0 will bisect teh angles between teh oder two if (3a+c)^2(bc+2cd-3ad)=(b+3d)^2(bc+2ab-3ad) dbt ...
-
find \int_{0}^{\pi/4}{\frac{x dx}{cosx(cosx +sinx)}} ...
-
1..∫ X2/(A+BX)2 dx ...
-
Q1 If point moves insdie equilateral triangle of side length 3 unit such taht it is nearer to the angle bisectors of the triangle than to any sides.then calculate area traced by point P Q2 Let L1=y/b +z/c ;x=0 L2=x/a -z/c ;y= ...
-
The locus of the orthocentre of the triangle formed by the lines ( 1 + p )x - py + p( 1 + p ) = 0, ( 1 + q )x - qy + q( 1 + q ) = 0, and y=0 (where p not equal to q ) is A) Hyperbola B) parabola C) ellipse D) straight line ...
-
If the sum of first n terms of an A.P. is cn2, then the sum of squares of these n terms is A) \frac{n(4n^{2}-1)c^{2}}{6} B) \frac{n(4n^{2}+1)c^{2}}{3} C) \frac{n(4n^{2}-1)c^{2}}{3} D) \frac{n(4n^{2}+1)c^{2}}{6} ...
-
A five digit number contains 1,2,3,4,5 without repetition.The probability that number is divisble by 1)4 2)12 3)24 A bag contains 6 red and 3 white balls .Four balls are drawn one by one and not replaced.The probablity that t ...
-
EVALUATE *Image* ...
-
\lim_{n\rightarrow \infty}\frac{(\sum_{x=1}^{n}{x^4})(\sum_{x=1}^{n}{x^5})}{(\sum_{x=1}^{n}{x^t})(\sum_{x=1}^{n}{x^{9-t}})}=\frac{4}{5} ...
-
\sum_{r=0}^{9}{\left(-1 \right)^r\cos^{10}\frac{r\pi}{10}} any short solution using complex? ...
-
\lim_{z \rightarrow \infty}\frac{\int_{1/2}^{z}{[cot^{-1}x]dx}}{\int_{1/2}^{z}{[1+\frac{1}{x}}]dx} where [.] is GINT ...
-
1..IF P,Q,R MAY BE PERIMETER ,CIRCUMRADIUS AND INRADIUS OF AN ARBITARY TRIANGLE THE WHICH OF THE FOLLOWING MAY NOT BE ALWAYS TRUE-- (A)P>Q+R (B) P≤Q+R (C)P/6<Q+R<6P (MULTI ANSWER) ...
-
\left ( 1+\frac{1}{3} \right )\left ( 1+\frac{1}{3^2} \right )\left ( 1+\frac{1}{3^4} \right )\left \left ( 1+\frac{1}{3^8} \right )..........................\left ( 1+\frac{1}{3^{2^n}} \right ) ...
-
How to find the square root of 1- i ? ...
-
In a triangle ABC ,AD is the perpendicular to BC .the inradii of ADC,ADB and ABC are x,y,z .find the relation between x ,y and z? note::the relationship shud have only x y and z.....no oder variable. ...
-
cosnθ = [P][/n] (cosθ) [P][/n] is a polynomial of degree n like [P][/2] = 2x^{2}-1 (n is a natural no.) then find (x+\sqrt{x^{2}-1})^{n} +(x-\sqrt{x^{2}-1})^{n} in terms of [P][/n] ...