-
\hspace{-16}$The no. of positive integer value of $\bf{n}$ for which $\bf{n^2 - 19n + 99}$\\\\ is perfect square. ...
-
solve: 2sinx=|x| +a find 'a' such that there is no real root! ...
-
\hspace{-16}$If $\bf{f(x)=\frac{x^2}{1+x^2}.}$ Then Determine value of the following expression\\\\\\ $\bf{f\left(\frac{1}{2000}\right)+f\left(\frac{2}{2000}\right)+...+f\left(\frac{1999}{2000}\right)+f\left(\frac{2000}{2000} ...
-
Remember the formula for the sum of cubes of 1st n naturals..... \frac{n^2(n+1)^2}{4} Remember the formula we learnt in progressions for deriving this? Now derive this using bionomial theorem..... ...
-
z has property that |z-5i|=1 & z1 is such that |z1-5|=1 find z1 with the property that |z-z1| is maximum ...
-
Differentiate this ( a+x - a-x )/( a+x + a-x ) ...
-
In how many ways can you put 9 coins of into 2 pockets? Consider the cases as (a) All 9 coins are different (b) all 9 coins are same ...
-
if a,b,c,d and p are different real numbers such that (a2+ b2+c2)p2 -2(ab+bc+cd) p +(b2+c2+d2) ≤ 0 then a,b,c and d are in geometric progression ...
-
prove tan 3a - tan 2a - tan a = tan a . tan 2a . tan 3a ...
-
\hspace{-16}$\bf{(A)} No. of ordered pairs $\bf{(n,r)}$ which satisfy $\bf{\binom{n}{r}=2013}$\\\\\\ (B) No. of ordered pairs $\bf{(n,r)}$ which satisfy $\bf{\binom{n}{r}=2014}$ ...
-
Prove that n*(n+1)*(2n+1) is divisible by 6, for any n>0 ...
-
If a , b , c are a triangle angles, prove : csc(a/2)+csc(b/2)+csc(c/2)≥6 ...
-
\hspace{-16}$In a $\bf{â–³ABC}$ If $\bf{P}$ be a point which is Inside the $\bf{â–³ABC}$ such that\\\\ Area of $\bf{â–³APB=}$ Area of $\bf{â–³BPC=}$ Area of $\bf{â–³CPA}$.\\\\ Then prove that the point $\bf{P}$ is the centroi ...
-
lim sin[x]/[x] as x→0 ...
-
A and B toss a coin each alternatively.The first person to toss 5 heads wins.Find the chances of A winning if he starts the game? ...
-
\hspace{-16}$Is there is any Natural no. $\bf{n}$ which end with exactly ........\\\\ $\bf{(i)\;\; 2013-}$ zero,s.\\\\ $\bf{(ii)\; 2014-}$ zero,s.\\\\ $\bf{(iii)\; 2015-}$ zero,s.\\\\ ...
-
*Image* ...
-
if f(x)= 1/3 (f(x+1)+ 5/f(x+2) ) and f(x)>0 and finite for all x belonging to R,then limx→∞ f(x) is a) 2/5 b) 5/2 c) 10 d)0 ...
-
SOLVE dy/dx=1/(x^2+y^2) ...
-
*Image* ...
-
Of 3n+1 objects, n are indistinguishable, and the remaining ones are distinct. Find the number of ways to choose n objects from them. ...
-
2n players are participating in a tennis tournament. Find the number Permutation of pairings for the ï¬rst round ...
-
\hspace{-16}$If $\bf{a+b=8}$ and $\bf{ab+c+d=23}$ and $\bf{ad+bc=28}$ and $\bf{cd=12}$.\\\\ Then value of \\\\ $\bf{(i)\;\;\;a+b+c+d=}$\\\\ $\bf{(ii)\;\;ab+bc+cd+da=}$\\\\ $\bf{(iii)\; abcd=}$ ...
-
\hspace{-16}$Let $\bf{S = \{1,2,3,4,5\}}$. Then the no. of unordered pairs $\bf{\{A,B\}.}$\\\\\ of Subsets of $\bf{S}$ such that\\\\ $\bf{(i)\;\;\;\; A\cap B=\phi}$. Where $\bf{A\neq B}$\\\\ $\bf{(ii)\;\;\;\; A\cap B=S}$. Whe ...
-
find the minimum value of th modulus of the sum of all 6 trigo functions.. ...
-
\hspace{-16}$Total no. of positive divisers of $\bf{226894500}$ which are is in the form of\\\\ $\bf{(i)\;\;(4n+1)\;\;,}$ Where $\bf{n\in \mathbb{N}}$\\\\ $\bf{(ii)\;\;(4n+2)\;\;,}$ Where $\bf{n\in \mathbb{N}}$\\\\ $\bf{(iii) ...
-
\hspace{-16}$Minimum value of $\bf{n\in\mathbb{N},}$ whic has ......\\\\ $\bf{(i)\;\; 16-}$ divisers.\\\\ $\bf{(ii)\;\; 19-}$ divisers.\\\\ $\bf{(iii)\;\; 24-}$ divisers.\\\\ $\bf{(iv)\;\; 25-}$ divisers.\\\\ $\bf{(v)\;\; 26- ...
-
find tan10.tan70.tan30 ...
-
\hspace{-16}$The no. of divisers of the form $\bf{12\lambda+6(\lambda\in \mathbb{N})}$ of the no. $\bf{25200}$ ...
-
How many 7 digit integers can be formed whose digit sums to 10 and has the digits 1,2 and 3 only (a)66 (b)55 (c)77 (d)88 ...