-
f:\bf{R}\to\bf{R} \;\;, f(x) is a function satisfying f(x)+f(x^2)=2 \;\; \forall x \in \bf{R} , then f(x) is : a) into b) many one c) constant d) periodic Morethan one! ...
-
If ax2-bx+c=0 has two distinct roots lying in the interval (0,1), a,b,c(belong to) N, then log5abc= A)1 B)2 C)3 D)4 ...
-
∫010 [sinxcosx+x2]/[ex+x3-x] ...
-
Q2 Let f(x) =1+2/x and ffffff.....f(x)=fnx then find the maximum number of real roots of fn(x) a) 0 b) 1 c) 2 d) 3 ...
-
f(x) is a function satisfying the following condition.... f(x)+f '(x)+f ''(x)+f '''(x) ...upto n terms....= xn where f '(x)=first derivative of x f ''(x)=2nd derivative of x and so on.... Find the value of f(x) + f '(x)/1! + ...
-
*Image* ...
-
If 2f(sinx)+f(cosx) = x for all real x, find the domain and range. ...
-
https://www.youtube.com/watch?v=VX7FptwkkAA ...
-
can a cubic eqn. have three complex roots...!! I mean if there's 1 so there will be 2 can it be 3? if it can be... then look at this question, if b2 < 2ac, then prove that ax3 + bx2 + cx + d = 0 has exactly one real root. ...
-
\int_{0}^{2\pi} e^{\cos x} \cos({\sin x}) \; \mathrm{d}x ...
-
If sin(a+b)sin(a-b)=sin c (2sin b+sin c) , 0 <a,b,c < Pi, then the family of lines xsin a+y sin b+ sin c = 0, passes through the fixed point? ...
-
\hspace{-16}$If $\mathbf{a,b\in \mathbb{R}}$ and $\mathbf{a\neq b}$. Then Locus of all Complex no. $\mathbf{z}$ which\\\\ Satisfy the equation. $\mathbf{\mid z-a \mid^2-\mid z-b \mid^2=1}$ ...
-
*Image* I want to know how to solve these too if you cant see the Problems Copy and Paste the following link into the address bar http://imgur.com/EQ4vW *Image* ...
-
\textbf{Let}\; a \; \textbf{and} \; b \; \textbf{be the Real Parameters. One Root of the equation} \\\;x^{12}-abx+a^2=0 \; \textbf{is greater than} \;\;2,\textbf{then find minimum value of }\; |b| ...
-
bisector of an angle divides the triangle into two similar triangles. True or false?. In a.s. Prakashan,it is true. In arihant,it is false. ...
-
\hspace{-16}$Let $\mathbf{x^n+a_{1}.x^{n-1}+a_{2}.x^{n-2}+a_{3}.x^{n-3}+.......+a_{n}=2011}$\\\\ Where $\mathbf{a_{i}\in \mathbb{Z}\;\forall \;i\in \left\{1,2,3,....,n\right\}}$ has $\mathbf{4}$ Integrals Roots.\;\\\\ Then th ...
-
p(x) = x5 + x2 +1 have roots x1 , x2,x3,x4,x5. g(x) = x2-2. then the value of g(x1).g(x2).g(x3).g(x4).g(x5) - 30g(x1.x2.x3.x4.x5) is ? ...
-
find the number of values of x at which the function y=cos x + cos √2x is maximum is? options 0 2 1 infinite ...
-
Consider a triangle ABC formed by three points t1 , t2 , t3 on the parabola y2=4ax. The focus S is the orthocentre of the triangle. Calculate : (t1-1)(t2-1)(t3-1) ...
-
The eq x3+ax2y+bxy2+y3 represents 3 straight lines. if 2 of them r perpendicular then find the eqn of the 3rd line.. ...
-
\hspace{-16}\mathbf{\int_{0}^{\pi}\frac{25\sin x+2\cos x}{(625\sin^2 x+4\cos^2 x)}dx=} ...
-
x/a + y/b + z/c = 1 intersects the coordinate axes at A,B,C. if triangle PQR has mid points A,B,C then which of the following is/are true ; 1)ar(triangle PQR) = 2 √(a2b2+b2c2+c2a2) 2) foot of normal to triangle AC from O is ...
-
\hspace{-16}$Find all Complex no. $\mathbf{z}$ that satisfy the equations\\\\ $\mathbf{\ | z+3|+|z-3|=10}$ and $\mathbf{\ |2z+3i|=\sqrt{109}}$. ...
-
\hspace{-16}$The Least value of $\mathbf{S=\mid z-2-3i\mid+\mid z-4+3i\mid+\mid z-1-i\mid}$\\\\ Where $\mathbf{z\in \mathbb{C}}$ ...
-
\hspace{-16}$Evaluate $\mathbf{\sum_{k=1}^n \left\{\tan (2)^{k-1}.\sec(2)^k\right\}=}$\\\\\\ Where $\mathbf{\left\{x\right\}\neq }$ a fractional part function. ...
-
how many 4digit numbers are there whose sum of the digits is odd? ...
-
Q: Functions f(x) and g(x) are defined in [a,b] such that f(x) is monotonically increasing while g(x) is monotonically decreasing. If it is given that range of f(X) and g(x) are subsets of the domain, then find the domain and ...
-
ur approach...................?? q) In a triangle ABC, AC = BC then sin [ 3(A + B)/4 ] equals... i) Sin { B + 2C/2 } ii) Sin { A + 2C/2 } iii) Sin { B + 4C/2 } iv) Sin (B - 3C) ...
-
Let [x] denote the greatest integer less than or equal to x and {x} = x-[x] (commonly known as fractional part of x). Find all continuous functions f such that {f(x+y)} ={f(x)}+{f(y)} ...
-
\hspace{-16}$If $\mathbf{A=\int_{0}^{1}\{x^{50}-(2-x)^{50}\}dx}$ and $\mathbf{B=\int_{0}^1\{x^{50}.(1-x)^{50}\}dx}$.\\\\\\ Then $\mathbf{\frac{A}{B}=}$ ...