for disc KRKT = 12
KR = 12Iω2 = \frac{1}{2}\left(\frac{1}{2}mR^{2} \right)\left(\frac{v}{R} \right)^{2} = \frac{1}{4}mv^{2}
KT = 12mv2
hence KRKT = 12
KRKT + 1 = 32
KTKT+KR = 23
hence fraction of totoal energy is translational is 23
A circular disc rolls down on an inclined plane without slipping. what fraction of totoal energy is translational?
Consider the general case....
K.E.rotational = 12 I w2
K.E translational = 12 M v2
since pure rolling....so v=wR
so K.E translational = 12 M w2 R2
frac of translational energy = K.E translationalK.E translational+K.E rotational
plugging in the values.....
frac of translational energy = 12 M w2 R212 M w2 R2 + 12 I w2
so we get....
frac K.E. trans... = M R2MR2 + I
or .. . =11+I/(MR2)
I = MK2
K = radius of gyration....
so we get.. = 11+MK2/MR2
so K.E.frac. trnsln = R2R2 + K2
so K.E.frac. rotnl = K2R2 + K2
------------------------------------------------------------------------------------------
thus in case of a circular disc K2 = R2/2
so
so K.E.frac. trnsln = R2R2 + R2/2 = 23
-----------------------------------------------------------------------------------------
for disc KRKT = 12
KR = 12Iω2 = \frac{1}{2}\left(\frac{1}{2}mR^{2} \right)\left(\frac{v}{R} \right)^{2} = \frac{1}{4}mv^{2}
KT = 12mv2
hence KRKT = 12
KRKT + 1 = 32
KTKT+KR = 23
hence fraction of totoal energy is translational is 23