So by balancing the forces we get
N1 + kN2 = Mg
N2 = kN1
N1 + k2N1 = Mg
(k2 + 1) N1 = Mg ..........................1
by balancing the torque abt the centre of cylinder we get..
(kN1 + kN2 ) = MR2 α / 2
k(N1 + kN1) = MRα/2
k(k+1)Mg / (k2 + 1) = MRα/2 from 1
So α = 2k(k+1)g / (k2 + 1)R
Now 0 = ω + αt
so t = -ω/α
Now θ = 1/2αt2
= 1/2 α * ω2 / α2
= 1/2 ω2 / α
= ω2(k2 +1)R / 4k(k+1)g..
Now number of turns = θ / 2πR....
: )