62
Lokesh Verma
·2008-10-31 12:42:04
let the length of string that hangs out be L
So,
L+2.√x2+b2 = c
dL/dt=v
Now we differentiate...
Then double differentiate to find accleration of point B
This will solve the question.
62
Lokesh Verma
·2008-10-31 12:43:42
Of course u need to write the FBD and pput that equation as well :)
11
Shailesh
·2008-10-31 18:59:58
yes i solved with this...
L+2.√x2+b2 = c
dL/dt + 2/(√x2+b2).2x.(dx/dt) = 0
v=-4x/(√x2+b2).(dx/dt)
dx/dt = -√x2+b2 v / 4x
differentiating,
dv/dt = d/dt{4x/(√x2+b2)} . (dx/dt) + 4x/(√x2+b2). d2x/dt2
0 = d/dt{x/(√x2+b2)} . (dx/dt) + x/(√x2+b2). d2x/dt2
d/dt{x/(√x2+b2)} .√x2+b2 v / 4x = x/(√x2+b2). d2x/dt2
d/dt{x/(√x2+b2)} .(x2+b2) v = 4x2. d2x/dt2
4 d2x/dt2 = d/dt{x/(√x2+b2)} .{1+(b/x)2} v
d/dt{x/(√x2+b2)} = {1/√x2+b2 + x/(x2+b2)3/2 } . dx/dt
= -{1/√x2+b2 + x/(x2+b2)3/2 }.√x2+b2 (v / 4x)
= -{1 + x/(x2+b2) }(v / 4x)
Thus,
4 d2x/dt2 = d/dt{x/(√x2+b2)} .{1+(b/x)2} v
= -{1 + x/(x2+b2) }/ 4x . {1+(b/x)2}
I dont know what mistake i am making :(
62
Lokesh Verma
·2008-10-31 19:12:27
Dont have the patience to check the mistake..
L+2.√x2+b2 = c
dL/dt + 2/2(√x2+b2).2x.(dx/dt) = 0
v=-2x/(√x2+b2).(dx/dt)
dx/dt = -√x2+b2 v / 2x
dx/dt = -√1+(b/x)2 v/2
differentiating,
2/v d2x/dt2 = 1/(2√1+(b/x)2 ) {2b/x} {-1/x2} dx/dt
2/v d2x/dt2 = {-b/x3}/(√1+(b/x)2 ) dx/dt
2/v d2x/dt2 = {b/x3}.v/2
d2x/dt2 = {b/x3}.v2/4
24
eureka123
·2008-11-03 11:01:14
sir is this answer???????????
33
Abhishek Priyam
·2008-11-03 11:08:48
thats acc of block now draw FBD of block and find tension....
24
eureka123
·2008-11-03 11:16:34
answer is still not coming.........plzzz help
33
Abhishek Priyam
·2008-11-03 11:29:21
I think tere some calculation mistake...
acc comes out to be :
sorry theres v2b2 in numerator
now i think answer is coming....
T will be (1/2cosθ)(m*acc+mg)