MULTIPLE ANGLES

If tan^2α=1+2tan^2β,prove that cos2β=1+2cos2α

1 Answers

51
Aniq Ur Rahman ·

I'm Using A and B in place of Alpha and Beta respectively,

tan2A= 1+ tan2B + tan2B
=> tan2A - tan2B = 1+ tan2B
=> sin2Acos2A - sin2Bcos2B = 1 + sin2Bcos2B
=> sin2Acos2B - sin2Bcos2Acos2A cos2B = 1cos2B
=> (sinAcosB)2 - (sinBcosA)2 = cos2A
=> cos2A = sin(A+B)sin(A-B)
=> cos2A = cos2B - cos2A
=> 2cos2A -1 = cos2B -1
=> 2cos2A= (2cos2B -1) -1
=> 2cos2A +1 = cos2B

Proved. :)

Your Answer

Close [X]