-
[Av]=2[ic]+3[jc]-[kc] [Bv]=-[ic]-5[jc]+3[kc] [Cv]=-3[ic]+7[jc]-9[kc] λ=2 μ=3 find [Av].(μ[Bv]+λ[Cv]) ...
-
[Av]=2[ic]+3[jc]-[kc] [Bv]=-[ic]-5[jc]+3[kc] [Cv]=-3[ic]+7[jc]-9[kc] find [Av].([Bv]+[Cv]) ...
-
[Av]=2[ic]+3[jc]-[kc] [Bv]=[ic]+5[jc]-3[kc] λ=5 μ=6 find (μ[Av]).(λ[Bv]) ...
-
[Av]=-2[ic]+3[jc]-[kc] [Bv]=[ic]+5[jc]+3[kc] μ=7 find (μ [Av]).[Bv] ...
-
[Av]=2[ic]+3[jc]-[kc] [Bv]=[ic]+5[jc]+3[kc] λ=5 find [Av].(λ[Bv]) ...
-
[Av]=2[ic]+3[jc]-[kc] [Bv]=-[ic]+5[jc]+3[kc] find [Av].[Bv] ...
-
[Av]=l[ic]+2[jc]+n[kc] [Bv]=2[ic]-1[jc]-5[kc] if [Bv]=d[Av] find d ...
-
[Av]=l[ic]+2[jc]+n[kc] [Bv]=2[ic]-m[jc]-5[kc] if [Av]=[Bv] find l, m, n ...
-
[Av]=2[ic]-m[jc]+n[kc] [Bv]=[ic]+[jc]-[kc] find m & n such that [Av]+λ[Bv]=-[ic]-6[jc]+3[kc] ...
-
[Av]=[ic]+2[jc]-3[kc] [Bv]=2[ic]-3[jc]+5[kc] λ=5, μ=7 find μ[Av]+λ[Bv] ...
-
[Av]=[ic]+2[jc]-3[kc] find λ[Av] where λ=5 ...
-
find additive inverse of [Av] where [Av]=3[ic]-6[jc]-2[kc] ...
-
[Av]=[ic]+2[jc]-3[kc] [Bv]=3[ic]+6[jc]-2[kc] [Cv]=2[ic]-3[jc]+5[kc] find [Av]-[Bv]+[Cv] ...
-
[Av]=[ic]+2[jc]-3[kc] [Bv]=3[ic]+6[jc]-2[kc] [Cv]=2[ic]-3[jc]+5[kc] find [Av]+[Bv]+[Cv] ...
-
[Av]=[ic]+2[jc]-3[kc] [Bv]=2[ic]-3[jc]+5[kc] find [Av]-[Bv] ...
-
[Av]=[ic]+2[jc]-3[kc] [Bv]=2[ic]-3[jc]+5[kc] find [Av]+[Bv] ...
-
if two lines with direction cosines (1/3,2/3,n) and (2/7,m,6/7) are perpendicular then find m,n ...
-
find the direction cosine of (3,-3,0) ...
-
find the direction cosines of position vector P, given all three are equal ...
-
find the direction ratio of line OP whose direction cosines are 4/21,5/21,20/21 where P is at distance 42 from O ...
-
a point P is at distance 14 from origin and have direction cosines as 2/7,3/7 & 6/7 and another point Q is at distance 13 from origin and having direction cosines as 3/13, 4/13 & 12/13. find the direction ratio of PQ ...
-
lines of direction ratios {2,3,5} & {a,b,20} are parallel then a & b are ...
-
find the direction ratio of PQ given P(1,2,3) & Q(4,3,5) ...
-
find the angle between the lines having direction cosines as {2/7,3/7,6/7} and {12/13,4/13,3/13} ...
-
if two direction cosines are given as 12/13 & 3/13, find 3rd ...
-
find the direction cosines of a point (6,3,2) in space ...
-
find the distance of plane 3x+4y+12z+13=0 from a point (2,2,1) ...
-
find the distance of plane from origin [rv].(4[ic]-5[jc]+20[kc])=63 ...
-
find d such that line [rv]=4[ic]+[jc]-[kc]+λ(3[ic]-[jc]+4[kc])=0 lies on the plane [rv].([ic]+[jc]+[kc])+d=0 ...
-
find the eqn of plane through the line of intersection of planes [rv].(3[ic]-5[jc]-[kc])+3=0 & [rv].(2[ic]-[jc]+4[kc])+4=0 containing point (2,1,3) ...