x=\sqrt{3}tan(\frac{A}{2}) \\ y=\sqrt{3}tan(\frac{B}{2}) \\ z=\sqrt{3}tan(\frac{C}{2}) \\ \sum{x\sqrt{x^2 + \frac{1}{x^2}}}\geq \sum{x}\sqrt{2}\geq \sqrt{3}\sqrt{2}\sum{tan\frac{A}{2}}\geq 3\sqrt{2}
If xy+yz+zx = 3, prove that
\sqrt{1+x^4} + \sqrt {1+y^4} + \sqrt {1+z^4} \ge 3 \sqrt 2
-
UP 0 DOWN 0 1 6
6 Answers
x4 , y4 , z4 , are always +ve , independant of x , y , z .
So we can apply am-gm on 1 + x4 , etc.
We get 1 + x42 ≥ x2
or √1 + x4 ≥ √2 x
similarly √1 + y4 ≥ √2 y
and √1 + z4 ≥ √2 z
adding all of them together , we get L.H.S ≥ √2 ( x + y + z) ---------------- 1
now ( x+ y + z )2 = x2 + y2 + z2 + ( xy + zx + yz ) ≥ 9 ,--------------A
as given xy + zx + yz = 3 and accordingly each of x2 , y2 , z2 ≥ 1 ( if none of them are zero )
however , even if one or two of x , y , z are zero , then also we get either two or one of x , y , z ≥ 2
so from A , we get x + y + z ≥ 3 ------------------ 2
again from 1 and 2 , L.H.S ≥ √2 ( 3 ) ≥ 3√2
As started by Soumya, we arrive at \sqrt{1+x^4}\ge \sqrt{2}x, \sqrt{1+y^4}\ge \sqrt{2}y, \sqrt{1+z^4}\ge \sqrt{2}z
(x+y+z)^2=x^2+y^2+z^2+6
From Cauchy-Schwarz on (a_1,a_2,a_3)=(x,y,z) & (b_1,b_2,b_3)=(y,z,x), we arrive at (x^2+y^2+z^2)^2\ge 9 \Rightarrow (x+y+z)^2\ge 9
Now if x+y+z ≥ 3, it's as soumya has done....
But if (x+y+z)\le -3, then we write the entire thing - but this time taking the negative square roots like
\sqrt{1+x^4}\ge -\sqrt{2}x
Adding the 3 expressions we have our result.
I did using CS
2(1+x^4) \ge (1+x^2)^2 \Rightarrow \sqrt{2(1+x^4)} \ge 1+x^2
and we have \sum 1+x^2 = 3 + \sum x^2 \ge 3 + \sum xy = 6