mathematical treasure part1

Q

A=\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{4}}+................+\frac{1}{\sqrt{10000}}

Then find [A]

where [] represents GINT

18 Answers

11
Mani Pal Singh ·

k
i know laatex is in trouble
the ques is
A =1/√2+1√3+1/√4.....................1/√10000

find [A]

where[x] represents GINT

11
Mani Pal Singh ·

its the time 4 the answer

\frac{1}{\sqrt{m}}=\frac{2}{\sqrt{m}+\sqrt{m}}<\frac{2}{\sqrt{m}+\sqrt{m-1}}

on rationalizing

2(\sqrt{m}-\sqrt{m-1})

so we get

\frac{1}{\sqrt{2}}<2(\sqrt{2}-{\sqrt{1}})

\frac{1}{\sqrt{3}}<2(\sqrt{3}-{\sqrt{2}})

.
.
.
.
.
.
.
.
.
\frac{1}{\sqrt{10000}}<2(\sqrt{10000}-\sqrt{9999})

alternate terms r cutting so we r left with

A<2(100-1)=198

now again

\frac{1}{\sqrt{m}}=\frac{2}{\sqrt{m}+\sqrt{m}}>\frac{2}{\sqrt{m}+{\sqrt{m+1}}}

==2(\sqrt{m+1}-\sqrt{m})

A>2(\sqrt{10001}-\sqrt{2})>197

So we get

197<A<198

so [A]=197

1
JOHNCENA IS BACK ·

hey mani how was aieee?

check ur chatbox

11
Mani Pal Singh ·

HeY TrY ThIs AgAiN

9
Celestine preetham ·

gud one and nice approach

1
Philip Calvert ·

rohan already solved one this kind b4

let me find ...

1
Manas ·

is the answer 100.

1
Manas ·

good question . no idea

1
Manas ·

Is the ques

A =1/√2+1√3+1/√4.....................1/√10000

or
A =1/√2+1/√3+1/√4.....................1/√10000

24
eureka123 ·

[] represents GINT naa???????
kyunki har baar end mein pata chalta hai ki bracket gint thaa[3][3][2][2]

1
Manas ·

Add question otherwise there is no sense in asking to answer

1
Manas ·

even me i cant see the ques

1
°ღ•๓яυΠ·

meko q ni dikh ra

39
Dr.House ·

this one`s a pretty good one. let others try

11
Mani Pal Singh ·

yes
ny contenders ???
i will wait 4 some time to give the answer

if someone is trying tell me
i will not give the solution

1
Vivek ·

is there a way to *solve* this?

1
Vivek ·

197

just a single line for loop

11
Mani Pal Singh ·

this 1 is damn cool
have a try on it [1]

Your Answer

Close [X]