targetiit users r fond of inequality/////////////////another classic one

a≥b>0=> a+a/b(a-b)≥4
hey its a/b.1/(a-b)

6 Answers

1
souvik seal ·

requesting users to post more inequalities...

1
Sonne ·

aside : please use latex

49
Subhomoy Bakshi ·

the question::

if\; a\geq b>0 \; \; \; \; \Rightarrow a+\frac{a}{b(a-b)}\geq 4

62
Lokesh Verma ·

Good question that I wouldnt have thought had prophet sir not posted the soln the other day ;)

this one is (a-b)+b+\frac{(a-b)+b}{b(a-b)}=(a-b)+b+\frac1b+\frac1{a-b}

Use AM GM

or else use t+1/t>=2

for a-b and b seperately...

(Edit: latexified).

341
Hari Shankar ·

Nishant, nice solution

I had a^2 = (a-b+b)^2 \ge 4b(a-b) \Rightarrow \frac{a}{b(a-b)} \ge \frac{4}{a}

\Rightarrow a + \frac{a}{b(a-b)} \ge a + \frac{4}{a} \ge 4

1
souvik seal ·

i did the same
put a-b=k ≥0 →a=b+k
so problem reduces to (b+k)+(b+k)/bk=(b+k)(1+1/bk)≥4

Your Answer

Close [X]