Napier's Analogy....
In a \Delta ABC, let
x=\tan\left(\frac{B-C}{2}\right)\tan\left(\frac{A}{2}\right)
y =\tan\left(\frac{C-A}{2}\right)\tan\left(\frac{B}{2}\right)
z =\tan\left(\frac{A-B}{2}\right)\tan\left(\frac{C}{2}\right)
Prove that x+y+z+xyz = 0
-
UP 0 DOWN 0 0 2
2 Answers
aieeee
·2009-07-26 21:04:30
ACTUALLY,its a formula,which goes this way: tan(B-C/2) = b-c/b+c hope,u cn solve it now.
( derirvation of the formula:
b-c/b+c = sinB-sinC/sinB+sinC ,
= (2 sin B-C/2 *cos B+C/2) / ( 2 sin B+C/2*cos B-C/2)
= (tan B-C/2) / (tan B+C/2)
now,putting B+C=∩ - A, U GET THE FORMULA