-
If f :N→N such that f(f(x))=3x; Then find f(2013) ...
-
Integrate: 1) (1+x-2/3)/(1+x) 2) cos2x /sinx 3)(x2 + n(n-1))/(xsinx+ncosx)2 ...
-
*Image* ...
-
Integrate:: 4x3[d2/dx2(1-x2)5]dx from 0 to 1.Here d2/dx2 means the double derivative of the function w.r.t.x. This sum is meant for students only ,not for experts. ...
-
1) Prove that ∫x3 2ax-x2 dx=7πa5/8. 2) Integrate: [ x4/(1-x4)] *cos-1(2x/(1+x2). Upper limit=1/ 3 ;Lower limit=-1/ 3 . 3) Integrate::: 2-x2/[(1+x) 1-x2 ].Upper limit=1;Lower limit=0. 4) Integrate:::: log(1+tanx) from 0 to ...
-
Integrate: 1) [(x-1) x4+2x3-x2+2x+1 ]/x2(x+1) 2) (x2-1)/(x3 2x4-2x2+1 ) ...
-
Integrate: 1) ( sinx )/( sinx + cosx ) 2) xln(x)/(x2-1)3/2. ...
-
*Image* ...
-
Lim Sin.Log x2 x→0 Find the value using L hospital rule. ...
-
*Image* ...
-
∫ sin(n+ 1/2 )x/sinx .dx. Integration from 0 to π. n is a natural number. ...
-
*Image* ...
-
INTEGRATE: 1) (x3+3)/x6(x2+1). Upper limit=∞;Lower limit=0 2) xe-x/( 1-e-2x ). Upper limit=0;Lower limit=∞. 3) If f(x) be a function satisfying f'(x)=f(x) with f((0)=1 and g be the function satisfying f(x) + g(x)=x2,then ...
-
The minimum value of mod of(sinA + cosA + tanA + secA + cotA + cosecA) is 2 2 -k.Find k ...
-
If f(x)=∫xa 1/f(x) dx (x>0) and ∫1a 1/f(x) dx= 2 ,then f(50) is: ...
-
π∫0 dx/1+cos2x ...
-
show that ------- Lt (2+x)sin(2+x) - 2sin2 /x = 2cos2 + 2sin2 x→ 0 ...
-
1.\int_{0}^{x}[1+t]^{3}dt 2.\int_{0}^{x}[x]dx plz help sir ...
-
Let f(x) be a non constant twice differentiable function defined on (-∞,∞) such that f(x)=f(1-x) and f'(1/4)=0.Then a) f''(x) vanishes at least twice on [0,1] b) f'(1/2)=0 c) ∫(frm -1/2 to 1/2)f(x+1/2)sinxdx=0 d) ∫(fr ...
-
2^sinx+2^cosx>1 ...
-
try this integration: \frac{x^{2}-2}{x^{3}\sqrt{x^{2}-1}} ...
-
INTEGRATE: emsin-1x ...
-
π∫0 xcotxdx ...
-
viii) f( x) =((2x-1)/(x-1)) ...
-
f(x)= log[x]/x evaluate limit x→ ∞ ...
-
Find the domain of the following fu *Image* nctions : ...
-
If f(x) is an invertible func such that f(x) + f(-x)=2a then ∫a-xa+x f-1(t)dt equals : ...
-
f(x)= (1-cosx) (1-cosx)..... upto ∞ ...
-
Let f(x+y)=f(x).f(y) and f(x)=1+sin(3x).g(x) where g(x) is cont. , then f'(x) is a) f(x).g(0) b)3g(0) c) f(x).cos(3x) d)3f(x).g(0) e)3f(x).g(x) ...
-
which one is greater: A=20104019 or B=2009200920112011 ...