01-08-10 Integration....

Evaluate: \int \sqrt{x+\sqrt{x^2+a^2}}dx

5 Answers

11
vaibhav sharma ·

Q→1

I = \int \sqrt{x + \sqrt{x^{2} + a^{2}}}

{x + \sqrt{x^{2}+ a^{2}}} = t → eq1

\left(1 + x/\sqrt{x^{2} + a ^{2}} \right)dx = dt

\left[ \left(\sqrt{x^{2}+ a^{2}} + x \right)/\left(\sqrt{x^{2} + a^{2}} \right)\right]dx = dt →eq3

also by rationalisation you can see that ,

-a2t = \left(x - \sqrt{x^{2} + a^{2}} \right) → eq2

subtracting eq1 - eq2 we get,

t + a2t = 2 \sqrt{x^{2} + a^{2}}

ie \sqrt{x^{2} + a^{2}} = \frac{t^{2} + a^{2}}{2t}

putting this value of \sqrt{x^{2} + a^{2}} in eq3 we get,
(\frac{2t^{2}}{a^{2} + t^{2}})dx = dt

therefore,
I = \int t^\frac{1}{2}( \frac{1}{2} + \frac{a^{2}}{2t^{2}})dt

I = \frac{t^{\frac{3}{2}}}{3} - \frac{a^{2}}{t^{\frac{1}{2}}}

(we know the value of t from eq 1 )

PLZ DO TELL ANY MISTAKES IF ANY

11
vaibhav sharma ·

i think there can be another smaller solution by putting x= atanθ
but im not able to proceed after a certain step in this method plz someone try this method also

1
ARKA(REEK) ·

Vaibhav ... ur absolutely right ...

I think ur stuck in the step where the expr. is ....

∫√(asecθ + atanθ) asec2θ dθ ....

Amn't I right ?????!!!!!

1
ARKA(REEK) ·

The other method is taking x = atanθ

Now the expr. boils down to ....

√∫(asecθ + atanθ) asec2θ dθ
=∫√a(1 + sinθcosθ) asec2θ dθ
=∫√a((sinθ/2 + cosθ/2)2cos2θ/2 - sin2θ/2) asec2dθ
=∫√a((tanθ/2 +1)21 - tan2θ/2) asec2θ dθ

Now take tanθ/2 = z

=2a√a∫√((z + 1)21 - z2) dz
=2a√a∫(z + 1) √(1 - z2) dz
=2a√a∫zdz√(1 - z2) + 2a√a∫dz√(1 - z2) ... is the simplified expr ...

Now this can be easily evaluated .... hope there r no calculation errors ...

If there r any ... please pardon me ...

1
Ricky ·

Let .............. x + √x 2 + a 2 = z 2

( x - z 2 ) 2 = x 2 + a 2 ;

or , x 2 - 2 z 2 x + z 4 = x 2+ a 2

or , 2 z 2 x = z 4 - a 2

or , x = z 22 - a 22 z 2

or , dx = dz { z2 + a 2z 3 }

Now , I = ∫ z { z2 + a 2z 3 } dz

Which is not troublesome , I think ?

Your Answer

Close [X]