04-10-09 Trigonometric Identity....

If sinA+ sin B + sin C = cos A + cos B + cos C = 0

Prove that :

1) sin 3A + sin 3B + sin 3C = 3sin (A+B+C)
2) cos 3A + cos 3B + cos 3C = 3cos (A+B+C)

7 Answers

106
Asish Mahapatra ·

Let Z1 = cosA + isinA
Z2 = cosB + i sinB
Z3 = cosC + isinC

From givn conditions, z1+z2+z3 = 0
and 1/z1 + 1/z2 + 1/z3 = 0

z13+z23+z33 = 3z1z2z3 (as z1+z2+z3=0)

So, putting the relevant expansions we get the result

1
Arshad ~Died~ ·

a shortcut for mcq's
Assume A = 120, B = 240, C = 360

cos A + cos B + cos C = 0
sin A + sin B + sin C = 0

cos 3A + cos 3B + cos 3C = 3
3Cos (A + B + C) = 3
3Sin (A + B + C) = 0

;-)

4
UTTARA ·

z1 = cis A

z2 = cis B

z3 = cis C

z1 + z2 + z3 = 0
=> z13 + z23 + z33 = 3z1 z2 z3

=> cos3A + cos3B + cos3C + i(sin3A + sin3B + sin3C) = 3cos(A + B + C) + 3isin(A+B+C)

Equating real n imaginary parts v get the required result

62
Lokesh Verma ·

The one from Uttara is the best..

asish do we really need 1/z+1/z2+1/z3 =0 condition?

4
UTTARA ·

Thank u Sir : )

106
Asish Mahapatra ·

no not at all, but that comes in handy for finding out other results

62
Lokesh Verma ·

@Asish: Yup it does :)

Your Answer

Close [X]