same trick
(x^2-4)\sin x+4x\cos x=(x^2+4).cos(x-\tan ^{-1} \frac{x^2-4}{4x})
Putting x-\tan ^{-1} \frac{x^2-4}{4x}=t
=> (1-4\frac {x^2+4}{(x^2-4)^2})dx=dt
same trick
(x^2-4)\sin x+4x\cos x=(x^2+4).cos(x-\tan ^{-1} \frac{x^2-4}{4x})
Putting x-\tan ^{-1} \frac{x^2-4}{4x}=t
=> (1-4\frac {x^2+4}{(x^2-4)^2})dx=dt
Solution contd..
[ 64 x2 / (x2 + 4)] dx = dt
I = 1/64 integ(sec t dt)
= log e ( tan (∩/4 + t/2) )